${S_N}^H$ Реакции 3-фторнитроаренов – ключевая стадия синтеза фторсодержащих 2-арилиндолов

Г. А. Жумабаева, ² С. К. Котовская, ² В. Н. Чарушин, ^{1,2} О. Н. Чупахин ^{1,2}

¹ Институт органического синтеза УрО РАН, Екатеринбург, E-mail: chupakhin@ios.uran.ru
² Уральский государственный технический университет,

Екатеринбург, E-mail: kotovskaya@mail.ustu.ru

Синтезированы 5-R-2-арил-6-фториндолы на основе реакции $S_N^{\ H}$ 3-фторнитробензолов с хлорметилфенилсульфоном в ДМСО в присутствии КОН с последующим восстановлением нитрогруппы в *орто*-нитробензолсульфонах до *орто*-аминобензолсульфонов, внутримолекулярной циклизацией оснований Шифа и элиминирования фенилсульфинат аниона, без выделения промежуточных интермедиатов. Фторсодержащие 2-арилиндолы были подвергнуты скринингу на противовирусную активность.

Индолы являются одним из важнейших классов гетероциклических соединений и входят в состав многих лекарственных препаратов. 1-(4-Индолилокси)-3-изопропиламино-2-пропанол («пиндолол») оказывает антиангенальное, антиаритмическое и гипотензивное действие [1], (±)-1-*трет*-бутиламино-3-[(2-метил-4-индолил)-окси]-2-пропанол бензоат («бопиндолол») обладает умеренной внутренней симпатомиметической [2], 3-(2'-этилоксазоло)индол — антибактериальной [3], 5-Метокситриптамина гидрохлорид («мексамин») — усиливает действие снотворных средств и анальгетиков, важной особенностью мексамина является его радиозащитная активность [4]. 2-Циано-3-(4'-метоксиарил)-5,6-диметоксииндол, [1-(4-(N-1-(4-метил-пиперазин-1-ил)-метилкарбонил)-N-метиламино)-анилино)-1-фенилметилен]-6-метоксикарбонил-2-индолинонмоноэтансульфонат обладают противоопухолевой активностью [5, 6].

В последние два десятилетия резко возрос интерес к химии фторсодержащих азагетероциклов [7]. Многие фторорганические соединения проявляют высокую биологическую активность по сравнению с их нефторированными аналогами. В продолжение исследований по синтезу фторсодержащих азагетероциклов [8-11] в настоящей работе приведены методы синтеза фторсодержащих 2-

арилиндолов и результаты исследований противовирусной активности фторсодержащих индолов.

Нуклеофильное замещение водорода (S_N^H) в нитроаренах представляет собой удобный инструмент функционализации путем прямого введения остатков различных нуклеофилов в o-положение к нитрогруппе и широко применяется в синтезе гетероциклических систем [12, 13].

Методы синтеза арилиндолов основанных на S_N^H -реакциях в активированных аренах ограничены. Известен синтез 2-амино-3-арил-6-нитроиндола взаимодействием *мета*-нитроанилина с фенилацетонитрилом [14], при этом процесс формирования индольного цикла включает окислительное нуклеофильное замещение водорода в *пара*-положении к нитрогруппе и последующую циклизацию с участием амино- и цианогрупп. 2-Арил-4-нитроиндолы были получены в результате окислительного замещения водорода *мета*-нитроанилина с ацетофеноном в присутствии t-ВиОК [15]. Также, 2-арилзамещенные индолы были получены в результате внутримолекулярной циклизации α -(2-нитроарил) алкилкетонов, продуктов викариозного нуклеофильного замещения водорода в нитроаренах с α -хлоралкил кетонами [16, 17]. N-гидрокси-2-арил-3-цианиндол получен в результате взаимодействия продукта викариозного нуклеофильного замещения водорода, нитроарилацетонитрила, с хлорметилфенилом и дальнейшей внутримолекулярной циклизации образовавшегося 2-(5-хлоро-2-нитрофенил)-3-фенилпропионнитрила [18].

С целью получения фторсодержащих 2-арилиндолов в работе использовали S_N^H -реакции в нитроаренах. Ранее нами показано, что викариозное нуклеофильное замещение водорода в нитроаренах **1а-е** с хлорметилфенилсульфоном ведет к селективному замещению атома водорода H(6) в *орто*-положении к нитрогруппе и завершается образованием 4-R-6-фенилсульфонилметил-3-фтор-

нитробензолов **2а-е** с выходами 60-70% и использованы в качестве ключевых интермедиатов для синтеза фторсодержащих 3-фенилсульфонилиндолов и хинолинов [10, 11].

CXEMA 1

R

SO₂Ph

$$ii$$

F

NO₂
 ii

F

NO₂
 iii

F

NH₂
 iii

SO₂Ph

 iii
 iii

NH₂
 iii

SO₂Ph

 iii

F

NH₂
 iii
 iii

NH₂
 $iiii$

NH₂
 $iiii$

NH₂
 $iiiii$

NH₂
 $iiii$

NH₂
 $iiii$

NH₂
 i

Реагенты и условия: *i.* Sn, MeOH, HCl; *ii.* ArCHO, NaOH, ДМСО; *iii.* NaOH/(-RSO₂H), NH₄Cl.

N_{2}	R	Ar	$N_{\underline{0}}$	R	Ar
10a	OCH_3	4-F-C ₆ H ₄ CHO	11b	OC_2H_5	3,4-ди-F-С ₆ Н ₃ СНО
10b	OC_2H_5	4-F-C ₆ H ₄ CHO	11c	$O-n-C_3H_7$	3,4-ди-F-С ₆ Н ₃ СНО
10c	$O-n-C_3H_7$	4-F-C ₆ H ₄ CHO	11e	-N-(CH ₂) ₂ O(CH ₂) ₂ -	3,4-ди-F-С ₆ H ₃ CHO
10d	$O-i-C_3H_7$	4-F-C ₆ H ₄ CHO	12a	OCH_3	4-CF ₃ -C ₆ H ₄ CHO
10e	-N-(CH ₂) ₂ O(CH ₂) ₂ -	4-F-C ₆ H ₄ CHO	12b	OC_2H_5	4-CF ₃ -C ₆ H ₄ CHO
11a	OCH_3	3,4-ди-F-С ₆ Н ₃ СНО	12d	$O-i-C_3H_7$	4-CF ₃ -C ₆ H ₄ CHO

Восстановлением нитрогруппы в *орто*-нитробензолсульфонах **2а-е** металлическим оловом в метаноле с соляной кислотой получены с выходами 59-70% 4- R-6-фенилсульфонилметил-3-фторанилины **36-е**, которые при взаимодействии с фторсодержащими бензальдегидами в присутствии избытка щелочи легко образуют основания Шиффа **4-6а-е**. В результате последующей внутримолекулярной циклизации сопровождающейся элиминированием фенилсульфинат аниона, получены фторсодержащие 2-арилиндолы **10a-е**, **11a-с**,**е** и **12a-d** с выходами 26-88%.

Фторсодержащие 3-сульфонилиндолы и N-алкил-3-сульфонилиндолы синтезированные нами ранее [10], исследовали на противовирусную активность в отношении вируса гриппа А. Испытания проводили на первичной культуре клеток почек собаки (МОСК). Для оценки противовирусной активности соединений использовали референс – вирус А (Н3N2) А/Виктория/35/72, данный штамм обладает инфекционной активностью (lgИД 50/20мкл – 6.5). Установлено, что для 5-этокси-3-фенилсульфонил-6-фториндола и N-бутилацетат-5-морфолино-3-сульфонил-6-фториндола при минимальной токсической дозе - 7,8 мкг/мл и рабочей концентрации - 4 мкг/мл, lgИД 50/20мкл – 0.5.

Экспериментальная часть.

Спектры ЯМР ¹Н записаны на спектрометрах «Bruker WP-250» и «Bruker DRX-400» с рабочими частотами 250.13 и 400.13 МГц, внутренний стандарт - Ме₄Si. Масс-спектры получены на спектрометре «Varian MAT-311A», условия регистрации: ускоряющее напряжение 3 кВт, энергия ионизирующих электронов 70 эВ, прямой ввод образца в источник. Контроль за ходом реакции и чистотой синтезированных соединений осуществляли с помощью ТСХ на пластинах Silufol UV-254 в системах этилацетат - хлористый метилен (1: 8).

Получение 5-R-6-фтор-2-(4^I-фторфенил)индолов 10а-е (общая методика). К раствору 0.67 ммоля 4-R-6-фенилсульфонилметил-3-фторанилина 3а-е и 0.67 ммоля 4-фторбензальдегида в 5 мл ДМСО при перемешивании добавили 6.7 ммоля мелко измельченного NaOH. Реакционную массу перемешивали 1ч 40 мин при 25 °C, затем нейтрализовали 10% раствором NH₄Cl. Выпавший осадок отфильтровали и перекристаллизовали из водного этанола. Характеристики соединений 10а-е представлены в таблице 1.

Получение 5-R-6-фтор-2-(3^I,4^I-дифторфенил)индолов 11а-с,е (общая методика). К раствору 0.67 ммоля 4-R-6-фенилсульфонилметил-3-фторанилина **3а-с,е** и 0.67 ммоля 3,4-дифторбензальдегида в 5 мл ДМСО при перемешивании добавили 6.7 ммоля мелко измельченного NaOH. Реакционную массу перемешивали 1ч при 25 °C, затем нейтрализовали 10% раствором NH₄Cl. Выпавший осадок отфильтровали и перекристаллизовали из водного метанола. Характеристики соединений **11а-с,е** представлены в таблице 2.

Получение 5-R-6-фтор-2-(4^I-трифторметилфенил)индолов 12а-d (общая методика. К раствору 0.67 ммоля 4-R-6-фенилсульфонилметил-3-фтор-анилина **3а-d** и 0.67 ммоля 4-трифторметилбензальдегида в 5 мл ДМСО при перемешивании добавили 6.7 ммоля мелко измельченного NaOH. Реакционную массу перемешивали 2 ч при 25 °C, затем нейтрализовали 10% раствором NH₄Cl. Выпавший осадок отфильтровали и перекристаллизовали из водного этанола. Характеристики соединений **126-д** представлены в таблице 3.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 07-03-12112), Совета по грантам Президента Российской Федерации (программа государственной поддержки ведущих научных школ, грант НШ-3758.2008.3) и программы BRHE (грант CRDF BP 2M05).

Список литературы

- 1. M. Д. Машковский, *Лекарственные средства*, **1**, 265 (1998).
- 2. R. C. Allen; in *«Annual reports medicinal chemistry»*, ed. D. M. Bailey, Academic Press, New York, **21**, 323 (1986).
- 3. M. Noltemeyer, G. M. Sheldrick, H. U. Hope and A. Zeeck, *J. Antibiot.* **35**, 549 (1982).
- 4. М. Д. Машковский, *Лекарственные средства*, **1**, 292 (1998).
- 5. WO, 105,213 Al., Chem. Abstrs., 143, 460025s (2005).
- 6. WO, 13,099 Al., Chem. Abstrs., 140, 163755g (2004).
- T. Hiyama, Organofluorine compounds. Chemistry and application, Springerverlag, Berlin, 2000
- К. Котовская, Г. А. Жумабаева, Н. М. Перова, З. М. Баскакова, Е. Ф. Беланов,
 Н. И. Бормотов, С. М. Балахнин, О. А. Серова, В. Н. Чарушин, О. Н. Чупахин,
 Хим.-фарм. журн., 41(2), 5-10 (2007).
- 9. Г. А. Жумабаева, С. К. Котовская, Н. М. Перова, В. Н. Чарушин,
 - О. Н. Чупахин, Изв. АН. Сер. хим., № 7, 1196-1200 (2006).
- 10. Г. А. Жумабаева, С. К. Котовская, Н. М. Перова, В. Н. Чарушин,
 - О. Н. Чупахин, Изв. АН. Сер. хим., № 10, 1980-1984 (2007).
- О. Н. Чупахин, В. Н. Чарушин, С. К. Котовская, Г. А. Жумабаева,
 Изв. АН. Сер.хим., 2008, в печати.
- 12. M. Makosza and K. Wojciechowski, *Heterocycles*, 54, 445-474 (2001).
- 13. O. N. Chupakhin, V. N. Charushin, and H. C. van der Plas, *Nucleophilic Aromatic Substitution of Hydrogen*, Academic Press, New York, 41 (1994).
- 14. N. Moskalev and M. Makosza, *Heterocycles*, **52**, 533-536 (2000).
- 15. N. Moskalev and M. Makosza, *Tetrahedron Lett.*, **40**, 5395-5398 (1999).
- 16. C. D. Moody and K. F. Rahimtoola, J. Cem. Soc., Perkin Trans 1, 673- (1990).

- 17. J. Bonjoch, J. Quirante, A. Linares and J. Bosch, Heterocycles, 27, 2883- (1988).
- 18. Z. Wrobel and M. Makosza, *Tetrahedron*, **53**, 5501-5514 (1997).

Таблица 1. Выходы, температуры плавления, данные спектров ЯМР 1 Н 5-R-2- $(4^{\rm I}$ -фторфенил)-6-фториндолов 10a-е

Соеди-	R	Тпл. °С	Выход, %	Брутто-	ЯМР 1 Н (ДМСО- d_{6}), δ , м.д.
нение				формула	
10a	OCH ₃	148-149	82	$C_{15}H_{11}F_2NO$	3,80 с (3H, CH ₃ O), 6,58 с (1H, 3-H, CH), 7,03 т (2H, С ₆ H ₄),
					7.08 д (J 7,0 Γ ц, 1H, 4-H), 7,12 д (J 8,7 Γ ц 1H, 7-H), 7,72 м (2H, C_6 H ₄),
					11,16 уш.с (1H, NH)
10b	OC_2H_5	112-113	88	$C_{16}H_{13}F_2NO$	[1,36 т (3H), 3,04 кв (2H), CH ₃ CH ₂ O], 6,64 с (1H, 3-H, CH), 7,02 д
					(<i>J</i> 4,9 Гц, 1H, 4-H), 7,06 д (<i>J</i> 8,5 Гц, 1H, 7-H), [7,10 д (2H), 7,16 д (2H),
					С ₆ H ₄], 11,09 уш.с (1H, NH)
10c	$O-n-C_3H_7$	144-145	66	$C_{17}H_{15}F_2NO$	[1,01 т (3H), 1.77 кв (2H), 3,98 т (2H), CH ₃ CH ₂ CH ₂ O], 6,74 с (1H, 3-H,
					CH), 7,14 т (2H, C_6H_4); 7,20 д (J 4,9 Γ ц, 1H, 4-H), 7,28 д (J 8,7 Γ ц, 1H,
					7-H), 7,82 дд (2H, C ₆ H ₄), 11,41 уш.с (1H, NH)
10d	O - i - C_3H_7	156-157	77	$C_{17}H_{15}F_2NO$	[1,29, 1,32 оба т (по 3H, (<u>CH₃)</u> 2CHO], [4,40 м (1H, (CH ₃)2 <u>CH</u> O), 6,59 с
					$(1H, 3-H, CH)$; 7,05 (д, 2H, C ₆ H ₄), 7,08 д (J 10,7 Γ ц, 1H, 7-H), 7,16 д (J
					8,5 Гц, 1Н, 4-Н), 7,77 дд (2Н, С ₆ Н ₄), 11,23 уш.с (1Н, NН)
10e	-N-(CH ₂) ₂ O(CH ₂) ₂ -	217-218	88	$C_{18}H_{16}F_2N_2O$	[10,47 м (4H), 3,80 м (4H), O(CH ₂) ₂], 6,71 с (1H, 3-H, CH),
					$7,17$ д (J 6,9 Γ ц, 1 H , 4- H), 7,20 дд (2 H , C_6H_4), 7.33 д (J 7,6 Γ ц, 1 H ,
					7-H), 7,81 дд (2H, C ₆ H ₄), 11,40 уш.с (1H, NH)

Таблица 2. Выходы, температуры плавления, данные спектров ЯМР 1 Н 5-R-2- $(3^I, 4^I$ -дифторфенил)-6-фториндолов 11a-c,е

Соеди-	R	Т _{пл.} °С	Выход, %	Брутто- формула	ЯМР ¹ Н (ДМСО-d ₆), δ, м.д.
ПСПИС				формула	
11a	OCH ₃	87-88	55	$C_{15}H_{10}F_3NO$	3,79 c (3H, CH ₃ O), 6,51 c(1H, 3-H, CH), 7,03 т (2H, C ₆ H ₄),
					7,08 д (Ј 6,8 Гц, 1Н, 4-Н), 7,16 д (Ј 8,0 Гц, 1Н, 7-Н), 7,68 м (2Н,
					C_6H_4), 11,20 ym.c (1H, NH)
11b	OC_2H_5	88-89	27	$C_{16}H_{12}F_3NO$	[1,36 т (3H), 4,03 кв (2H), CH ₃ CH ₂ O], 6,64 с (1H, 3-H, CH),
					7,02 д (<i>J</i> 4,9 Гц, 1H, 4-H), 7,07 д (<i>J</i> 7,1 Гц 1H, 7-H), [7,27 м (1H),
					7,53 м (1H), 7,67 м (1H), C ₆ H ₃], 11,22 уш.с (1H, NH)
11c	$O-n-C_3H_7$	131-132	26	$C_{17}H_{14}F_3NO$	[1,02 т (3H), 1,78 кв (2H), 3.92 т (2H), CH ₃ CH ₂ CH ₂ O],
					6,64 с (1H, 3-H, CH), 7,03 д (<i>J</i> 6,8 Гц, 1H, 4-H), 7,08 д (<i>J</i> 8,6 Гц,
					1H, 7-H), [7,33 M (1H), 7.53 M (1H), 7.74 M (1H), C_6H_3],
					11,23 уш.с (1H, NH)
11e	-N-(CH ₂) ₂ O(CH ₂) ₂ -	244-245	52	$C_{18}H_{15}F_3N_2O$	[2,98 м (4H), 3.77 м (4H), O(CH ₂) ₂], 6,85 с (1H, 3-H, CH),
					7,07 д (Ј 8,2 Гц, 1Н, 7-Н), 7,12 д (Ј 4,5 Гц, 1Н, 4-Н), [7,68 д (2Н),
					7,94 д (2H), C ₆ H ₄], 11,43 уш.с (1H, NH)

Таблица 3. Выходы, температуры плавления, данные спектров ЯМР ¹Н 5-R-2-(4^I-трифторметилфенил)-6-фториндолов 12a-d

Соеди-	R	Тпл. °С	Выход, %	Брутто- формула	ЯМР 1 Н (ДМСО- d_{6}), δ , м.д.
12a	OCH ₃	144-145	60	C ₁₆ H ₁₁ F ₄ NO	3,86 с (3H, CH ₃ O), 6,83 с (1H, 3-H, CH), 7,11 д (<i>J</i> 5,9 Гц, 1H, 4-H), 7,15 д (<i>J</i> 9,3 Гц, 1H, 7-H), [7,67 д (2H), 7,94 д (2H), C ₆ H ₄], 11,47 уш.с (1H, NH)
12b	OC_2H_5	168-169	80	$C_{17}H_{13}F_4NO$	[1,41 т, (3H), 4,08 кв (2H), CH ₃ CH ₂ O], 6,80 с (1H, 3-H, CH), 7,09 д (<i>J</i> 6,8 Гц, 1H, 4-H), 7,14 д (<i>J</i> 9,6 Гц, 1H, 7-H), [7,67 д (2H), 7,93 д (2H), C ₆ H ₄], 11,44 уш.с (1H, NH)
12c	$O-n-C_3H_7$	148-149	52	$C_{18}H_{15}F_4NO$	[1,02 т (3H), 1,78 кв (2H), 3,93 т (2H), CH ₃ CH ₂ CH ₂ O], 6,77 с (1H, 3-H, CH), 7,06 д (<i>J</i> 8,0 Гц, 1H, 4-H), 7,10 д (<i>J</i> 10,2 Гц, 1H, 7-H), [7,63 д (2H), 7,88 д (2H), C ₆ H ₄], 11,36 уш.с (1H, NH)
12d	O-i-C ₃ H ₇	171-172	71	C ₁₈ H ₁₅ F ₄ NO	