ХИМИЗМ ПАРОКИСЛОРОДНОЙ ГАЗИФИКАЦИИ ГРАФИТА

Проведен термодинамический анализ парокислородной газификации и сжигания графита при вариации избытка окислителя а. Раскрыты химические реакции, протекающие в процессе газификации и горения графита. Определены компоненты горючих газов, продуктов горения.

Введение

Уголь — это не только топливо для энергетики и промышленности, это, кроме того, сырье для получения широкого набора ценных топлив и химических веществ. Особую роль играет сжигание и неполное сгорание угля, в т.ч. для получения горючих газов и синтез газов. Известны многочисленные монографии и обзоры посвященные конверсии угля.

В работе [1] приведены результаты термодинамического анализа газификации твердых бытовых отходов (ТБО) при атмосферном давлении в диапазоне температур от 300 К до 4000 К. Определены температурная зависимость компонентов разложения ТБО, внешние затраты энергии на газификацию, которые идут на компенсацию эндотермического эффекта реакции, увеличение физической теплоты газов и минералов, испарение воды. В работе [2] исследовано влияние концентрации окислителя на адиабатическую температуру при частичном сжигании ТБО. Определены компоненты горючих газов ($CO+H_2+H$), продуктов горения (CO_2+H_2O), конденсированных компонентов (огненного шлака). Найдены составляющие баланса энергии – теплотворная способность горючих газов, физическое тепло компонентов горючих газов, продуктов горения и шлака.

В работе [3] проведен термодинамический анализ паровой газификации графита при атмосферном давлении в диапазоне температур от 500 К до 4000 К. Паровая газификация углеродсодержащих материалов широко используется в производстве технологического синтезгаза — сырья для химической промышленности, горючего газа для непосредственного сжигания и получения тепловой энергии.

В работе [4] приведены результаты термодинамического анализа паровой газификации петрококса. Дан компонентный состав при температуре T=300÷4000 К. Показано, что процесс газификации завершается при T>1050 К. Вычислена температурная зависимость удельных энергозатрат на процесс газификации.

В монографии [5] рассмотрены процессы получения тепла и горючих газов при окислении угля, приведены оценки энергетической эффективности конверсии угля.

Вслед за [1, 2, 3, 4, 5] здесь исследуется парокислородная газификация графита.

Огневое преобразование угля, как природного объекта, сопровождается не только и не столько окислением углерода (графита), но и многочисленными сопутствующими химическими реакциями присутствующих в угле веществ. Все это затрудняет изучение кинетики и термодинамики процессов преобразования угля. Даже в наиболее полных исследованиях указанные затруднения ограничивают рассмотрение реакций при стандартных условиях, т.е. без учета эволюции состава при влиянии температуры.

Насколько нам известно, даже в простейшем случае реакции чистого графита с парами воды и кислородом не исследованы детально. В данной работе восполнен этот пробел. Разработана теория парокислородной газификации графита при вариации избытка окислителя α. Раскрыты химические реакции, протекающие в процессе газификации и горения графита.

Метод исследования

Расчет адиабатической температуры и продуктов сгорания проводится по универсальной программе TEPPA [6]. Программа TEPPA основана на принципе максимума энтропии, имеет обширную базу данных по термодинамическим свойствам веществ и позволяет получить полную информацию термодинамического анализа. Программа отличается высоким быстродействием и простотой в использовании.

Адиабатическая температура при вычисленных компонентах равновесной системы находится на основе закона сохранения энергии [7]

$$I_{np}(T_{a\partial}) = I_{ucx}(T_o),$$

$$I_{ucx}(T_o) = \sum_{j} M_{j} \Delta_{f} H_{j}^{0}, \qquad I_{np}(T_{a\partial}) = \sum_{i} M_{i} \Delta_{f} H_{i}^{0} + \sum_{i} M_{i} \int_{T_o}^{T_{a\partial}} C_{Pi}(T) dT.$$

3десь $I_{ucx}(T_0)$ — сумма энтальпий образования исходных компонентов $\Delta_f H^0$ с учетом

их мольной доли M, $I_{np}(T_{a\phi})$ — сумма энтальпий образования продуктов переработки и энтальпий их нагрева от начальной температуры T_0 =298,15 K до адиабатической $T_{a\phi}$, C_p — удельная теплоемкость.

В данной работе проведен термодинамический анализ парокислородной газификации графита при вариации коэффициента избытка окислителя α при исходном составе

$$C_{(c)}+H_2O+\alpha O_2$$

где $C_{(c)}$ – графит, (c) –конденсированное состояние, H_2O – пары воды, O_2 – молекулярный кислород. Для вхождения в программу TEPPA задается исходный состав сырья в мольных долях, давление P=0,1 $M\Pi a$ и энтальпия образования I_{ucx} .

Исходные компоненты и продукты реакции парокислородной газификации

В табл. 1 приведены исходные компоненты и продукты реакции парокислородной газификации графита при вариации коэффициента избытка окислителя α =0÷4. Компоненты веществ представлены в последовательности распечатки по программе TEPPA.

Здесь I_{ucx} - энтальпия образования [кДж/кг], компоненты исходного состава: графит $C_{(c)ucx}$, пары воды H_2O_{ucx} , молекулярный кислород O_{2ucx} , продукты реакции водород H_2 , вода H_2O , графит $C_{(c)}$, оксид углерода CO, диоксид углерода CO_2 , метан CH_4 , атомарный водород H, атомарный кислород O и OH [моль/кг], адиабатическая температура $T_{a\partial}$ [K].

Таблица1. Исходные компоненты и продукты реакции парокислородной газификации, $P=0,1~M\Pi a$

α	I_{ucx}	$C_{(c)ucx}$	H_2O_{ucx}	O_{2ucx}	$C_{(c)}$	00	CO ₂	CH_4	H_2O	H_2	Н	НО	02	0	$T_{a\phi}$
0	-8060	33,3	33,3		29,56		1,86	1,86	29,59						272
0,1	-7284	30,1	30,1	3,01	14,55	0,79	10,41	4,34	14,51	6,89					747
0,2	-6643	27,45	27,45	5,5	7,66	6,19	11,45	2,14	9,34	13,82					869
0,3	-6106	25,23	25,23	7,6	0,28	10,3	13,41	1,23	6,36	16,41					929
0,4	-5650	23,34	23,34	9,35		15,83	7,5		11,18	12,16					1342
0,5	-5227	21,72	21,72	10,9		14,56	7,16		14,58	7,13	0,012				1881
0,6	-4915	20,31	20,31	12,19		12,09	8,21		16,07	4,11	0,154	0,102	0,004	0,0026	2341
0,7	-4615	19,07	19,07	13,36		9,49	9,57		16,11	2,44	0,403	0,622	0,176	0,066	2618
0,8	-4349	17,97	17,97	14,39		7,63	10,34		15,46	1,678	0,4892	1,17	0,797	0,216	2721
0,9	-4113	16,99	16,99	15,31		6,32	10,67		14,74	1,265	0,481	1,5	1,672	0,3596	2757
1	-3900	16,11	16,11	16,13		5,32	10,79		14,05	0,999	0,442	1,68	2,629	0,469	2770
1,5	-3100	12,81	12,81	19,23		2,48	10,33		11,43	0,402	0,232	1,72	7,173	0,63	2725
2	-2573	10,63	10,63	21,28		1,19	9,43		9,71	0,187	0,11	1,36	10,77	0,515	2635
2,5	-2198	9,08	9,08	22,73		0,56	8,52		8,48	0,089	0,045	0,983	13,56	0,351	2529
3	-1919	7,93	7,93	23,81		0,251	7,68		7,55	0,041	0,02	0,66	15,76	0,211	2414
3,5	-1703	7,04	7,04	24,65		0,105	6,93		6,8	0,018	0,016	0,42	17,51	0,114	2295
4	-1530	6,32	6,32	25,32		0,041	6,28		6,18	0,008	0,0024	0,259	18,93	0,057	2175

На рис.1(а, б) графически представлены продукты реакции парокислородной газификации графита $C_{(c)}+H_2O+\alpha O_2$ как функции от коэффициента избытка кислорода α . Здесь же показана

концентрация исходных компонентов $C_{(c)ucx}$, H_2O_{ucx} , O_{2ucx} , адиабатическая температура $T_{a\partial}$. Давление системы $P=0,1M\Pi a$.

С увеличением α , увеличивается доля экзотермических реакций сгорания углерода до CO и CO_2 , адиабатическая температура растет и достигает максимального значения при $\alpha=1$ ($T_{a\phi}=2770$ K), далее идет спад температуры ($T_{a\theta}=2770 \div 2175$ K при $\alpha=1 \div 4$) вследствие того, что избыточный кислород является балластом снимающим температуру.

В 1 кг исходной смеси с увеличением α , концентрации исходных графита $C_{(c)ucx}$ и воды H_2O_{ucx} монотонно убывают из-за увеличения количества окислителя кислорода O_{2ucx} .

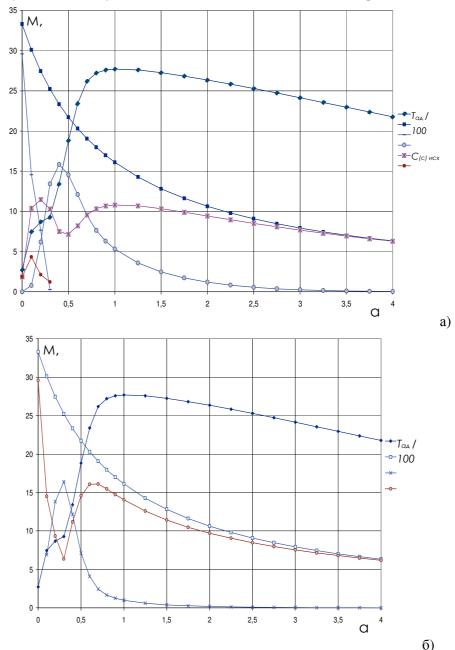


Рис.1. Концентрация исходного графита C_{ucx} , исходной воды H_2O_{ucx} и компоненты продуктов реакции парокислородной газификации графита: графит $C_{(c)}$, оксида углерода CO, диоксид углерода CO_2 , метан CH_4 , вода H_2O , водород H_2 , [моль/кг].

Адиабатическая температура - $T_{a\partial}$, K, коэффициент избытка окислителя - кислорода α . Давление - P=0, $IM\Pi a$

При достижении коэффициента окислителя значения α =0,3 весь графит $C_{(c)}$ вступает в химические реакции.

В диапазоне α =0,1÷0,4, происходит разложение воды углеродом с выделением молекулярного водорода H_2 и оксида углерода CO. Количество продуктов газификации составляет примерно 60% исходного графита, при адиабатической температуре T_{a0} =930÷1340 K.

Как уже сказано при α =0,1÷0,4 концентрация CO увеличивается в основном за счет реакции разложения воды графитом, далее основная доля CO получается из реакции горения $C_{(c)}$ до CO. Продукт диоксид углерода есть результат горения $C_{(c)}$ до CO_2 , и догорания CO до CO_2 .

Метан CH_4 появляется при $\alpha=0\div0.4$. Максимальная концентрация CH_4 достигается при $\alpha=0.1$ и адиабатической температуре $T_{a\bar{o}}=750~K$, составляет примерно 15% от исходного графита. В процессе Хоффмана [5] наработка метана достигает 50%, это обусловлено применением никелевого катализатора и большей температурой (T=1200~K).

Химизм парокислородной газификации графита

На основе полученного при расчете мольного состава продуктов реакции получим результирующие (брутто) реакции. Расщепим брутто-реакцию на составляющие (нетто) реакции. Методику анализа брутто- и нетто-реакций рассмотрим на примерах при α =0, 0.1, 0.5, 1.

α =0, $T_{a\partial}$ =272 K, P=0,1 M Π a

В соответствии с компонентным составом парокислородной газификации имеем:

Компоненты	$C_{(c)ucx}$	H_2O_{ucx}	O_{2ucx}	$C_{(c)}$	CO_2	CH ₄	H_2O
моль/кг	33,3	33,3	0	29,59	1,86	1,86	29,59

Исходя из компонентного состава 3,71 моль/кг графита ($C_{(c)ucx}$ - $C_{(c)}$ =33,3-29,59=3,71) и 3,71 моль/кг воды (H_2O_{ucx} - H_2O =33,3-29,59=3,71) вступили в химические реакции.

Также имеем продукты реакции $CH_4=1,86$ моль/кг, $CO_2=1,86$ моль/кг.

Отсюда результирующая (брутто) реакция:

$$3,71 C_{(c)} + 3,71 H_2O = 1,86 CH4 + 1,86 CO_2$$

Расщепим брутто-реакцию на составляющие реакции:

реакция образования метана:

$$1,86 C_{(c)} + 3,71 H_2O = 1,86 CH_4 + 1,86 O_2$$

кислород O_2 , полученный в реакции образования метана окисляет углерод:

$$1,86 C_{(c)}+1,86O_2=1,86 CO_2$$

$\alpha = 0.1$, $T_{a\dot{o}} = 747 \text{ K}$, $P = 0.1 \text{ M}\Pi a$

Компонентный состав:

Компоненты	$C_{(c)ucx}$	H_2O_{ucx}	O_{2ucx}	$C_{(c)}$	CO_2	CO	CH_4	H_2O	H_2
моль/кг	30,1	30,1	3,01	14,55	10,41	0,79	4,34	29,59	6,89

Есть дефицит углерода $C_{(ucx)}$ - $C_{(c)}$ =30,1-14,55=15,55 моль/кг и воды H_2O_{ucx} - H_2O =30,1-14,51=15,59 моль/кг, имеем продукты реакции CH_4 =4,34 моль/кг, H_2 =6,89 моль/кг, CO=0,79 моль/кг,

Отсюда брутто-реакция:

$$15,55 C_{(c)} + 15,59H_2O + 3,01O_2 = 4,34 CH_4 + 0,79CO + 10,41CO_2 + 6,89H_2$$

Имеем следующие нетто-реакции:

Во второй реакции происходит разложение воды углеродом с выделением оксида углерода и водорода. Здесь получили 6,89 моль/кг CO, но в компонентном составе CO=0,79 моль/кг, это означает что 6,89-0,79=6,1 моль/кг CO сгорело до CO_2 :

В компонентном составе CO_2 -10,41 моль/кг, 10,41-6,1=4,31 моль/кг CO_2 получено в результате реакции:

 $\alpha = 0.5$, $T_{\alpha \dot{\alpha}} = 1881 \text{ K}$, $P = 0.1 \text{ M}\Pi a$

Компоненты	$C_{(c)ucx}$	H_2O_{ucx}	O_{2ucx}	CO_2	CO	H_2O	H_2	Н
моль/кг	21,72	21,72	10,9	7,16	14,56	14,58	7,13	0,012

Брутто-реакция:

$$21,72C_{(c)} + 7,14H_2O + 10,9O_2 = 14,56CO + 7,13CO_2 + 7,13H_2 + 0,012H$$

Нетто-реакции:

реакция разложения воды углеродом:

$$7,13C + 7,13H_2O = 7,13CO + 7,13H_2$$

В компонентном составе CO=14,56 моль/кг, это означает что 14,56-7,13=7,43 моль/кг графита сгорело до CO:

$$7,43C+3,715 O_2=7,43 CO$$

Имеем диоксид углерода CO_2 7,16 моль/кг, который получен в результате горения: $7,16C+7,16O_2=7,16CO_2$

Реакция диссоциации водорода:

 $0,006H_2=0,012H$

 $\alpha = 1$, $T_{a\partial} = 2770 \text{ K}$, $P = 0.1 \text{ M}\Pi a$

- · · · · · · · · · · · · · · · · · · ·	- ,	- ,									
Компоненты	$C_{(c)ucx}$	H_2O_{ucx}	O_{2ucx}	CO_2	CO	H_2O	H_2	Н	ОН	O_2	O
моль/кг	16,11	16,11	16,13	10,8	5,32	14,05	0,99	0,442	1,683	2,63	0,446

Брутто-реакция:

 $16,11C_{(c)}+2,06H_2O+12,96O_2=5,32CO+10,8CO_2+0,99H_2+0,442H+1,68,3OH+1,08O$ Нетто-реакции:

 $0.99C + 0.99H_2O = 0.99CO + 0.99H_2$ $4.33C + 2.165 O_2 = 4.33 CO.$ $10.8 C + 10.8 O_2 = 10.8 CO_2$ $0.442H_2O = 0.442H + 0.442OH$ $0.621H_2O + 0.621O = 1.241OH$ $0.545O_2 = 1.0895O.$

Аналогично рассуждая найдем брутто- и нетто-реакции для всех α. Продукты полученные в результате нетто-реакций представлены на рис 2.

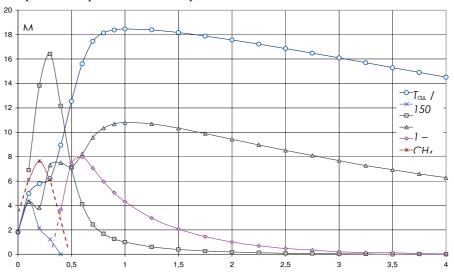


Рис. 2. Продукты полученные в процессе реакций $1 - C_{(c)} + 2H_2O = CH_4 + O_2$, $2 - C_{(c)} + H_2O = CO + H_2$; $3 - C_{(c)} + O_2 = CO_2$, $4 - C_{(c)} + 0.5O2 = CO$, $5 - CO + 0.5O_2 = CO_2$,

 $T_{a\partial}$ - адиабатическая температура [K], давление - P=0,1 МПа, α - коэффициент избытка окислителя - кислорода

Продукт газификации CO получается в результате двух реакций – разложение воды углеродом $C_{(c)}+H_2O=CO+H_2$, и горения $C_{(c)}+0.5O_2=CO$

В диапазоне $0,1<\alpha<0,3$ *CO* полученное в результате реакции $C_{(c)}+H_2O=CO+H_2$ возрастает и достигает максимума. В диапазоне $0,4<\alpha<0,6$ возрастает массовая доля *CO* полученного из реакции $C_{(c)}+0,5O_2=CO$, далее идет снижение.

С увеличением α , увеличивается доля экзотермических реакций сгорания углерода до CO и CO_2 , адиабатическая температура растет и достигает максимального значения при $\alpha=1$ ($T_{a\phi}=2770$ K), далее идет спад температуры ($T_{a\phi}=2770 \div 2175$ K при $\alpha=1 \div 4$) как уже отмечалось выше, вследствие того, что избыточный кислород является балластом снимающим температуру.

Метан CH_4 полученный в результате реакции $C_{(c)}+2H_2O=CH_4+O_2$ появляется при $\alpha=0\div0,4$. Максимальная концентрация CH_4 достигается при $\alpha=0,1$ и адиабатической температуре $T_{a0}=750~K$.

Т.о. в результате парокислородной газификации графита $C_{(c)}+H_2O+\alpha O_2$ происходят следующие реакции: разложение воды углеродом и наработка синтез газа CO и H_2 , частичное сжигание $C_{(c)}$ до CO_2 , диоксид углерода есть результат горения $C_{(c)}$ до CO_2 , и догорания CO до CO_2 .

Заключение

Раскрыты и проанализированы химические реакции, проходящие в процессе

парокислородной газификации графита.

В результате парокислородной газификации графита $C_{(c)}+H_2O+\alpha O_2$ происходят следующие реакции: разложение воды углеродом и наработка синтез газа CO и H_2 , частичное сжигание $C_{(c)}$ до CO, диоксид углерода есть результат горения $C_{(c)}$ до CO_2 , и догорания CO до CO_2 .

Наработка горючих газов ($CO+H_2$) при окислении графита кислородом и разложении воды уменьшается с возрастанием α .

Литература

- 1. Балан Р.К., Татыбеков А., Энгельшт В.С. Влияние температуры на газификацию твердых бытовых отходов. Известия КГТУ им. И.Раззакова, Бишкек, 2007, № 11, с. 160-166.
- 2. Балан Р.К., Татыбеков А., Энгельшт В.С. Термодинамический анализ газификации и сжигания твердых бытовых отходов в атмосфере кислорода. Известия НАН КР, Бишкек, 2007, №4, с. 68-75.
- 3. Энгельшт В.С., Балан Р.К. Баланс энергии при паровой газификации графита. Горение и плазмохимия.- Алматы: «Қазақ университеті», 2005, с. 302-309
- 4. Мессерле В.Е., Устименко А.Б., Хан Л. Плазменно-паровая газификация петрококса. IV международный симпозиум по теоретической и прикладной плазмохимии. Сб. трудов. Т.П. Иваново, 2005, с. 600-605.
- 5. Хоффман Е. Энерготехнологическое использование угля. М.: Энергоатомиздат,1983.-328 с.
- 6. Трусов Б.Г. Программная система ТЕРРА для моделирования фазовых и химических равновесий в плазмохимических системах. 3-й международный симпозиум по теоретической и прикладной плазмохимии. Сб. материалов. Т.І. Иваново, 2002. с 217-220.
- 7. Термодинамические свойства индивидуальных веществ. Справочное издание: -Т.І, Кн. І. -/ Гурвич Л. В., Вейц И. В., Медведев В. А. и др– М.: Наука, 1978-1982.