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Abstract. This paper considers the problem of recognition and rep-
resentation of dynamically changing chordal graphs. The input to the
problem consists of a series of modifications to be performed on a graph,
where modifications can be additions or deletions of complete r-vertex
graphs. The purpose is to maintain a representation of the graph as long
as it remains a chordal graph and to detect when it ceases to be so.

1 Introduction

A graph G is said to be chordal if every cycle of length 4 or more contains a chord
(an edge between two non-consecutive vertices in a cycle). From the practical
point of view, chordal graphs have numerous applications in, for example, sparse
matrix computation (e.g., see [1]), relational databases [2], and computational
biology [3].

Several authors have studied the problem of dynamically recognizing and rep-
resenting various graph families. [4] devises a fully dynamic recognition algorithm
for chordal graphs which handles edge operations in O(n) time. The authors of
[5] improve the current complexities for maintaining a chordal graph by starting
with an empty graph and repeatedly adding or deleting edges. They use their
result to ameliorate the time bound for the biology-based problem of improving
the matrix representation of an evolutionary tree (phylogeny) which contains er-
rors. For proper interval graphs [6], each update can be supported in O(d+log n)
time where d is the number of edges involved in the operation.

Unlike the existing works, we develop an algorithm for maintaining represen-
tations of chordal graphs under complete r-vertex graph insertions or deletions,
where cliques have at least 3 vertices. Since a clique tree of a chordal graph has
at most n nodes, each operation performs in O(n) time.

2 Preliminaries

In this article, we assume that the reader has a moderate familiarity with graph
theory. This section aims at defining notions and notations related to chordal
graphs.
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Let G = (V (G), E(G)) = (V, E) be a finite undirected and simple graph
with |V | = n vertices and |E| = m edges. The subgraph of G induced by S is
G[S] = (S, E[S]), where E[S] = {uv ∈ E | u, v ∈ S}. Let Kr be a complete
r-vertex graph, where r ≥ 31. We define the following:

V (G) ∩ V (Kr) = p, E(G) ∩ E(Kr) = q,

G + Kr = {V (G) + (V (Kr) \ p), E(G) + (E(Kr) \ q)},

G − Kr = {V (G) − (V (Kr) \ p), E(G) − E(Kr)}.

A subset S of V is called a separator if G[V \ S] is disconnected. S is a uv-
separator if vertices u and v from G[V \S] are in different connected components
of G[V \ S]; S is a minimal uv-separator if none of S subsets is a uv-separator.
S is a minimal separator if S is a minimal uv-separator for all u and v from
G[V \ S].

A clique of a chordal graph G is a non-empty subset C ⊆ V such that all
the vertices of C are mutually adjacent. A clique K is maximal if K is not
properly contained in another clique. A clique tree of G is a tree T such that its
nodes have a 1-1 correspondence with maximal cliques of G, edges correspond
to non-empty intersections of pairs of maximal cliques, and for all vertices v in
G, the set of maximal cliques which contain v induces a subtree of T . It is worth
remarking that a graph G is chordal iff it has a clique tree (see [3],[8],[9] for
detailed explanation). We use u, v as vertex names of G and x, y as node names
of T . The nodes x and y correspond to maximal cliques Kx and Ky of G. A clique
tree has n nodes and each edge xy of T has the weight w(xy) = |Kx ∩Ky|. There
are known algorithms to find a clique tree of a chordal graph in O(m + n) time
(see, e.g.,[1]).

We use Ij = Kj ∩ N(Kj) to denote a minimal separator of a graph G, where
N(Kj) is a set of all nodes of a tree T adjacent with node j.

3 Algorithm

We consider how to implement modification operations. Some of these operations
are identical to those in [4], but are repeated here so that the reader can have
easy access to the full algorithm.

Our algorithm supports the following operations: Insert Query and Delete
Query which return ”yes” if a modified graph (G+Kr and G−Kr, respectively)
is chordal and ”no” otherwise; Insert and Delete modify the clique tree T
according to made modification.

We first deal with the insertion of a complete r-vertex graph Kr.

Lemma 1. ([10], [11]) Let G be a connected chordal graph with its clique tree
T . Then
1 For r = 1 an incremental dynamic algorithm which considers addition of vertices

is presented in [7], for r = 2 a dynamic algorithm which deals with addition and
deletion of edges is proposed in [4].
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(i) a set S is a minimal vertex separator of G iff S = Kx ∩ Ky for some edge
xy ∈ T ,

(ii) if S = Kx ∩ Ky for xy ∈ T , then S is a minimal uv-separator for any
u ∈ Kx \ S and v ∈ Ky \ S.

Theorem 1. Let G be a chordal graph without a complete r-vertex graph Kr.
Then G + Kr is chordal iff the following conditions are satisfied:

(i) G has a clique tree T with u ∈ Kx, v ∈ Ky such that u, v ∈ Kr for some
edge xy in T ,

(ii) there is a path from x to y in T such that Kr ∩ Ij �= ∅, where Ij is a set of
vertices contained in this path.

Proof. (i) Let I = Kx ∩ Ky �= ∅. Since uv is not an edge of G, we have u /∈
Ky, v /∈ Kx and hence u ∈ Kx − I, v ∈ Ky − I. By Lemma 1, I is a uv-separator.

Let C be any cycle in G+Kr with length ≥ 4 that contains uv where uv ∈ q.
Let P = C − uv, so that P is a path from u to v of length ≥ 3. Since I is a
uv-separator, P must contain a vertex s ∈ I. Then either su or sv is a chord of
P , which means C has a chord. Hence, G + Kr is a chordal graph.

(ii) Let an edge xy /∈ T where u ∈ Kx, v ∈ Ky for u, v ∈ p, then there exists
the path P from x to y in T and a minimal separator Ij of G, containing in this
path. Suppose to the contrary that there exists any node z in a clique tree T ,
such that Kr ∩ Iz = ∅, which is contained in the path P . Let Iz = {u′, v′} and
Kz ∩ Kx = u′, Kz ∩ Ky = v′, then u′, v′ /∈ Kr. Since uv ∈ G + Kr and there
exist the edges uu′ ∈ Kx, u′v′ ∈ Kz, v

′v ∈ Ky, G + Kr has a chordless cycle
(u, u′, v′, v). We get a contradiction. �

Insert Query(Kr)

If the conditions of Theorem 1 are satisfied, return ”yes”, otherwise return ”no”.

End Insert Query

We next show how to update a clique tree for G + Kr.

Insert(Kr)

1. Consider such edges of G + Kr that uv /∈ G with u ∈ Kx, v ∈ Ky such that
u, v ∈ Kr for any xy ∈ T . If such edges do not exist in G + Kr, we pass to
item 2. Otherwise, let I = Kx ∩Ky then K = I ∪{u, v} is a clique in G+Kr.
As K is not a clique of G, we must add to a new node z with Kz = K. We
must consider whether cliques Kx, Ky are maximal in G+Kr. Since v /∈ Kx,
then Kx ⊂ Kz iff Kx = I ∪ {u} iff |Kx| = |I| + 1. Similarly, u /∈ Ky, then
Ky ⊂ Kz iff Ky = I ∪ {v} iff |Ky| = |I| + 1. Thus, comparing |Kx|, |Ky|
and w(x, y) = |I| we determine, whether cliques Kx and Ky is maximal in
G + Kr.

Replace xy in T with a new node z representing Kz = I ∪ {u, v} and
add xz, yz, each with weight |I| + 1. Determine whether cliques Kx, Ky are
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maximal in G+Kr. If Kx, Ky are maximal then we pass to item 2. Otherwise,
if Kx is not the maximal clique, remove xz and replace x with z, if Ky is not
the maximal clique, remove yz and replace y with z.

2. Add a new node r to T corresponding to Kr. Connect r with other nodes i
such that Ki ∩Kr �= ∅, attribute to it weights w(i, r). Moreover, if Kw ⊂ Ki

for some w ∈ T then Kw is not maximal clique in G + Kr and we must
remove w from T .

End Insert

We will now examine a deletion of a complete r-vertex graph Kr.

Theorem 2. Let G be a chordal graph which contains a complete r-vertex graph
Kr. Then G − Kr is chordal iff the following conditions are satisfied:

(i) the edge uv ∈ Kr is contained exactly in two maximal cliques of G;
(ii) G does not contain any cycle consisting of vertices of the set Ir = Kr ∩

N(Kr).

Proof. (i) It is known that uv ∈ Kr, i.e. Kr is one of the maximal cliques
containing this edge. Then uv must be contained exactly in the one clique of
G except Kr. Suppose to the contrary that uv ∈ q is contained in two cliques
{u, v, s} and {u, v, t}, where st /∈ G, which are different from Kr. Then these
two cliques cannot be contained in one maximal clique of G. In this case the
deletion of Kr leads to the appearance of a chordless cycle (u, s, v, t) in G−Kr.
We get a contradiction.

(ii) Suppose to the contrary that Ir forms a cycle C. Note that Ir forms a
cycle iff it contains all vertices of a complete r-vertex graph Kr. Consider a case
when |N(Kr)| ≥ 2. Let Kx, Ky ∈ N(Kr), xy ∈ T and Ir = (Kx ∩ Kr, Ky ∩ Kr).
Since Ir forms a cycle C, it is clear that Kx ∩ Ky �= ∅. By the definition of a
chordal graph, all the cycles of G have length 3. The deletion of Kr leads to
the disappearance of a third edge for each clique N(Kr). Since these cliques are
connected between themselves by the common vertices or edges, the cycle of
length 2 · |N(Kr)| appears in G − Kr. It means that G − Kr has a cycle with
length ≥ 4. We get a contradiction. �

Delete Query(Kr)

If the conditions of Theorem 2 are satisfied, return ”yes”, otherwise return ”no”.

End Delete Query

We show how to update a clique tree for G − Kr.

Delete(Kr)

1. Consider edges uv of G such that uv /∈ G − Kr, with u ∈ Kx, v ∈ Ky and
u, v ∈ Kr for any xy ∈ T . If such edges do not exist in G − Kr, pass to item
2. Otherwise, T of G contains a node z corresponding Kz = K (see item 1
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of Insert for the definition of Kz). In G − Kr, the maximal clique Kz has
split into the cliques Ku

z = Kz − {v} and Kv
z = Kz − {u} which may not be

maximal.
Divide the set N(Kz) into Nu = {x ∈ N(z) | u ∈ Kx}, Nv = {y ∈

N(z) | v ∈ Ky} and Nw = {w ∈ N(z) | u, v /∈ Kw}. Then Ku
z is not maximal

in G−Kr iff ∃x ∈ Nu such that Ku
z ⊂ Kx and w(x, z) = k−1. Similarly, Kv

z

is not maximal in G−Kr iff ∃y ∈ Nv such that Kv
z ⊂ Ky and w(y, z) = k−1.

Replace z with two nodes z1 and z2 respectively representing Ku
z and Kv

z

and add the edge z1z2 with weight w(z1, z2) = k − 2. If x ∈ Nu, replace xz
with xz1. If y ∈ Nv, replace yz with yz2. If w ∈ Nw, replace zw with z1w or
z2w.

If Ku
z and Kv

z are maximal cliques then pass to item 2. Otherwise, if Ku
z

is not maximal because Ku
z ⊂ Kxi for some xi ∈ Nu then remove xiz1 and

replace z1 with xi. Similarly, if Kv
z is not maximal because Kv

z ⊂ Kyi for
some yi ∈ Nv then remove yiz2 and replace z2 with yi.

2. Remove r corresponding Kr from T .

End Delete

Corollary 1. If Ir = Kr ∩ N(Kr) forms two or more different paths Pi, then
Kr is a separator of G.

Proof. Let P1 and P2 be two paths formed by Ir = Kr ∩ N(Kr). Let Kx, Ky ∈
N(Kr) and Ir′ = Kx ∩ Kr, Ir′′ = Ky ∩ Kr. Assume that Ir′ ⊂ P1 and Ir′′ ⊂ P2.
Then we have Kx ∩ Ky = ∅. It means that deleting Kr leads to the appearance
of two connected components, where cliques Kx and Ky are contained in the
different connected components. Hence Kr is a separator of graph G. �
We use a clique tree T of a chordal graph G for performing the described oper-
ations. Since T has at most n nodes, each operation runs in O(n) time.

4 Conclusions

In this paper, we described a fully dynamic algorithm, which considers new mod-
ifications of graphs, i.e. insertions or deletions of complete r-vertex graph, where
r ≥ 3. The proposed algorithm could be a suitable addition to the algorithm of
Ibarra [10] for the maintenance of chordal graphs. Also, if it is known that the
edges which should be added to the input graph G form a clique, then we are
able to implement the algorithm more efficiently than if we were to add or delete
the edges one by one.
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