
A Fully Dynamic Algorithm for Recognizing and
Representing Chordal Graphs

Yrysgul Tursunbay kyzy

A.P. Ershov Institute of Informatics Systems
Russian Academy of Sciences, Siberian Branch

6, Acad. Lavrentjev pr., Novosibirsk, 630090, Russia
ryskulya@gmail.com

Abstract. This paper considers the problem of recognition and rep-
resentation of dynamically changing chordal graphs. The input to the
problem consists of a series of modifications to be performed on a graph,
where modifications can be additions or deletions of complete r-vertex
graphs. The purpose is to maintain a representation of the graph as long
as it remains a chordal graph and to detect when it ceases to be so.

1 Introduction

A graph G is said to be chordal if every cycle of length 4 or more contains a chord
(an edge between two non-consecutive vertices in a cycle). From the practical
point of view, chordal graphs have numerous applications in, for example, sparse
matrix computation (e.g., see [1]), relational databases [2], and computational
biology [3].

Several authors have studied the problem of dynamically recognizing and rep-
resenting various graph families. [4] devises a fully dynamic recognition algorithm
for chordal graphs which handles edge operations in O(n) time. The authors of
[5] improve the current complexities for maintaining a chordal graph by starting
with an empty graph and repeatedly adding or deleting edges. They use their
result to ameliorate the time bound for the biology-based problem of improving
the matrix representation of an evolutionary tree (phylogeny) which contains er-
rors. For proper interval graphs [6], each update can be supported in O(d+log n)
time where d is the number of edges involved in the operation.

Unlike the existing works, we develop an algorithm for maintaining represen-
tations of chordal graphs under complete r-vertex graph insertions or deletions,
where cliques have at least 3 vertices. Since a clique tree of a chordal graph has
at most n nodes, each operation performs in O(n) time.

2 Preliminaries

In this article, we assume that the reader has a moderate familiarity with graph
theory. This section aims at defining notions and notations related to chordal
graphs.

I. Virbitskaite and A. Voronkov (Eds.): PSI 2006, LNCS 4378, pp. 481–486, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

482 Y.T. kyzy

Let G = (V (G), E(G)) = (V, E) be a finite undirected and simple graph
with |V | = n vertices and |E| = m edges. The subgraph of G induced by S is
G[S] = (S, E[S]), where E[S] = {uv ∈ E | u, v ∈ S}. Let Kr be a complete
r-vertex graph, where r ≥ 31. We define the following:

V (G) ∩ V (Kr) = p, E(G) ∩ E(Kr) = q,

G + Kr = {V (G) + (V (Kr) \ p), E(G) + (E(Kr) \ q)},

G − Kr = {V (G) − (V (Kr) \ p), E(G) − E(Kr)}.

A subset S of V is called a separator if G[V \ S] is disconnected. S is a uv-
separator if vertices u and v from G[V \S] are in different connected components
of G[V \ S]; S is a minimal uv-separator if none of S subsets is a uv-separator.
S is a minimal separator if S is a minimal uv-separator for all u and v from
G[V \ S].

A clique of a chordal graph G is a non-empty subset C ⊆ V such that all
the vertices of C are mutually adjacent. A clique K is maximal if K is not
properly contained in another clique. A clique tree of G is a tree T such that its
nodes have a 1-1 correspondence with maximal cliques of G, edges correspond
to non-empty intersections of pairs of maximal cliques, and for all vertices v in
G, the set of maximal cliques which contain v induces a subtree of T . It is worth
remarking that a graph G is chordal iff it has a clique tree (see [3],[8],[9] for
detailed explanation). We use u, v as vertex names of G and x, y as node names
of T . The nodes x and y correspond to maximal cliques Kx and Ky of G. A clique
tree has n nodes and each edge xy of T has the weight w(xy) = |Kx ∩Ky|. There
are known algorithms to find a clique tree of a chordal graph in O(m + n) time
(see, e.g.,[1]).

We use Ij = Kj ∩ N(Kj) to denote a minimal separator of a graph G, where
N(Kj) is a set of all nodes of a tree T adjacent with node j.

3 Algorithm

We consider how to implement modification operations. Some of these operations
are identical to those in [4], but are repeated here so that the reader can have
easy access to the full algorithm.

Our algorithm supports the following operations: Insert Query and Delete
Query which return ”yes” if a modified graph (G+Kr and G−Kr, respectively)
is chordal and ”no” otherwise; Insert and Delete modify the clique tree T
according to made modification.

We first deal with the insertion of a complete r-vertex graph Kr.

Lemma 1. ([10], [11]) Let G be a connected chordal graph with its clique tree
T . Then
1 For r = 1 an incremental dynamic algorithm which considers addition of vertices

is presented in [7], for r = 2 a dynamic algorithm which deals with addition and
deletion of edges is proposed in [4].

A Fully Dynamic Algorithm 483

(i) a set S is a minimal vertex separator of G iff S = Kx ∩ Ky for some edge
xy ∈ T ,

(ii) if S = Kx ∩ Ky for xy ∈ T , then S is a minimal uv-separator for any
u ∈ Kx \ S and v ∈ Ky \ S.

Theorem 1. Let G be a chordal graph without a complete r-vertex graph Kr.
Then G + Kr is chordal iff the following conditions are satisfied:

(i) G has a clique tree T with u ∈ Kx, v ∈ Ky such that u, v ∈ Kr for some
edge xy in T ,

(ii) there is a path from x to y in T such that Kr ∩ Ij �= ∅, where Ij is a set of
vertices contained in this path.

Proof. (i) Let I = Kx ∩ Ky �= ∅. Since uv is not an edge of G, we have u /∈
Ky, v /∈ Kx and hence u ∈ Kx − I, v ∈ Ky − I. By Lemma 1, I is a uv-separator.

Let C be any cycle in G+Kr with length ≥ 4 that contains uv where uv ∈ q.
Let P = C − uv, so that P is a path from u to v of length ≥ 3. Since I is a
uv-separator, P must contain a vertex s ∈ I. Then either su or sv is a chord of
P , which means C has a chord. Hence, G + Kr is a chordal graph.

(ii) Let an edge xy /∈ T where u ∈ Kx, v ∈ Ky for u, v ∈ p, then there exists
the path P from x to y in T and a minimal separator Ij of G, containing in this
path. Suppose to the contrary that there exists any node z in a clique tree T ,
such that Kr ∩ Iz = ∅, which is contained in the path P . Let Iz = {u′, v′} and
Kz ∩ Kx = u′, Kz ∩ Ky = v′, then u′, v′ /∈ Kr. Since uv ∈ G + Kr and there
exist the edges uu′ ∈ Kx, u′v′ ∈ Kz, v

′v ∈ Ky, G + Kr has a chordless cycle
(u, u′, v′, v). We get a contradiction. �

Insert Query(Kr)

If the conditions of Theorem 1 are satisfied, return ”yes”, otherwise return ”no”.

End Insert Query

We next show how to update a clique tree for G + Kr.

Insert(Kr)

1. Consider such edges of G + Kr that uv /∈ G with u ∈ Kx, v ∈ Ky such that
u, v ∈ Kr for any xy ∈ T . If such edges do not exist in G + Kr, we pass to
item 2. Otherwise, let I = Kx ∩Ky then K = I ∪{u, v} is a clique in G+Kr.
As K is not a clique of G, we must add to a new node z with Kz = K. We
must consider whether cliques Kx, Ky are maximal in G+Kr. Since v /∈ Kx,
then Kx ⊂ Kz iff Kx = I ∪ {u} iff |Kx| = |I| + 1. Similarly, u /∈ Ky, then
Ky ⊂ Kz iff Ky = I ∪ {v} iff |Ky| = |I| + 1. Thus, comparing |Kx|, |Ky|
and w(x, y) = |I| we determine, whether cliques Kx and Ky is maximal in
G + Kr.

Replace xy in T with a new node z representing Kz = I ∪ {u, v} and
add xz, yz, each with weight |I| + 1. Determine whether cliques Kx, Ky are

484 Y.T. kyzy

maximal in G+Kr. If Kx, Ky are maximal then we pass to item 2. Otherwise,
if Kx is not the maximal clique, remove xz and replace x with z, if Ky is not
the maximal clique, remove yz and replace y with z.

2. Add a new node r to T corresponding to Kr. Connect r with other nodes i
such that Ki ∩Kr �= ∅, attribute to it weights w(i, r). Moreover, if Kw ⊂ Ki

for some w ∈ T then Kw is not maximal clique in G + Kr and we must
remove w from T .

End Insert

We will now examine a deletion of a complete r-vertex graph Kr.

Theorem 2. Let G be a chordal graph which contains a complete r-vertex graph
Kr. Then G − Kr is chordal iff the following conditions are satisfied:

(i) the edge uv ∈ Kr is contained exactly in two maximal cliques of G;
(ii) G does not contain any cycle consisting of vertices of the set Ir = Kr ∩

N(Kr).

Proof. (i) It is known that uv ∈ Kr, i.e. Kr is one of the maximal cliques
containing this edge. Then uv must be contained exactly in the one clique of
G except Kr. Suppose to the contrary that uv ∈ q is contained in two cliques
{u, v, s} and {u, v, t}, where st /∈ G, which are different from Kr. Then these
two cliques cannot be contained in one maximal clique of G. In this case the
deletion of Kr leads to the appearance of a chordless cycle (u, s, v, t) in G−Kr.
We get a contradiction.

(ii) Suppose to the contrary that Ir forms a cycle C. Note that Ir forms a
cycle iff it contains all vertices of a complete r-vertex graph Kr. Consider a case
when |N(Kr)| ≥ 2. Let Kx, Ky ∈ N(Kr), xy ∈ T and Ir = (Kx ∩ Kr, Ky ∩ Kr).
Since Ir forms a cycle C, it is clear that Kx ∩ Ky �= ∅. By the definition of a
chordal graph, all the cycles of G have length 3. The deletion of Kr leads to
the disappearance of a third edge for each clique N(Kr). Since these cliques are
connected between themselves by the common vertices or edges, the cycle of
length 2 · |N(Kr)| appears in G − Kr. It means that G − Kr has a cycle with
length ≥ 4. We get a contradiction. �

Delete Query(Kr)

If the conditions of Theorem 2 are satisfied, return ”yes”, otherwise return ”no”.

End Delete Query

We show how to update a clique tree for G − Kr.

Delete(Kr)

1. Consider edges uv of G such that uv /∈ G − Kr, with u ∈ Kx, v ∈ Ky and
u, v ∈ Kr for any xy ∈ T . If such edges do not exist in G − Kr, pass to item
2. Otherwise, T of G contains a node z corresponding Kz = K (see item 1

A Fully Dynamic Algorithm 485

of Insert for the definition of Kz). In G − Kr, the maximal clique Kz has
split into the cliques Ku

z = Kz − {v} and Kv
z = Kz − {u} which may not be

maximal.
Divide the set N(Kz) into Nu = {x ∈ N(z) | u ∈ Kx}, Nv = {y ∈

N(z) | v ∈ Ky} and Nw = {w ∈ N(z) | u, v /∈ Kw}. Then Ku
z is not maximal

in G−Kr iff ∃x ∈ Nu such that Ku
z ⊂ Kx and w(x, z) = k−1. Similarly, Kv

z

is not maximal in G−Kr iff ∃y ∈ Nv such that Kv
z ⊂ Ky and w(y, z) = k−1.

Replace z with two nodes z1 and z2 respectively representing Ku
z and Kv

z

and add the edge z1z2 with weight w(z1, z2) = k − 2. If x ∈ Nu, replace xz
with xz1. If y ∈ Nv, replace yz with yz2. If w ∈ Nw, replace zw with z1w or
z2w.

If Ku
z and Kv

z are maximal cliques then pass to item 2. Otherwise, if Ku
z

is not maximal because Ku
z ⊂ Kxi for some xi ∈ Nu then remove xiz1 and

replace z1 with xi. Similarly, if Kv
z is not maximal because Kv

z ⊂ Kyi for
some yi ∈ Nv then remove yiz2 and replace z2 with yi.

2. Remove r corresponding Kr from T .

End Delete

Corollary 1. If Ir = Kr ∩ N(Kr) forms two or more different paths Pi, then
Kr is a separator of G.

Proof. Let P1 and P2 be two paths formed by Ir = Kr ∩ N(Kr). Let Kx, Ky ∈
N(Kr) and Ir′ = Kx ∩ Kr, Ir′′ = Ky ∩ Kr. Assume that Ir′ ⊂ P1 and Ir′′ ⊂ P2.
Then we have Kx ∩ Ky = ∅. It means that deleting Kr leads to the appearance
of two connected components, where cliques Kx and Ky are contained in the
different connected components. Hence Kr is a separator of graph G. �
We use a clique tree T of a chordal graph G for performing the described oper-
ations. Since T has at most n nodes, each operation runs in O(n) time.

4 Conclusions

In this paper, we described a fully dynamic algorithm, which considers new mod-
ifications of graphs, i.e. insertions or deletions of complete r-vertex graph, where
r ≥ 3. The proposed algorithm could be a suitable addition to the algorithm of
Ibarra [10] for the maintenance of chordal graphs. Also, if it is known that the
edges which should be added to the input graph G form a clique, then we are
able to implement the algorithm more efficiently than if we were to add or delete
the edges one by one.

Acknowledgment. The author would like to thank V.A. Evstegneev for the state-
ment of the problem and I.B. Virbitskaite for her helpful comments and advice.

References

1. J. R. S. Blair and B. Peyton. An introduction to chordal graphs and clique trees.
In Graph Theory and Sparse Matrix Computation, volume 56 of IMA, pp. 1-29.
Ed.A.George and J.R.Gilbert and J.W.H.liu), Springer, 1993.

486 Y.T. kyzy

2. C. Beeri, R. Fagin, D. Maier and M. Yannakasis. On the desirability of acyclic
database schemes. Journal of the ACM, 30:479-513, 1983.

3. P. Buneman. A characterization of rigid circuit graphs. Discrete Mathematics,
9:205-212, 1974.

4. L. Ibarra. Fully dynamic algorithms for chordal graphs. In Proceedings of the
10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99), SIAM,
Philadelphia, 1999, pp.923-924.

5. A. Berry, A. Sigayret, and J. Spinrad. Faster dynamic algorithms for chordal
graphs, and an application to Phylogeny. In 31st Int. Workshop on Graph The-
oretical Concepts in Computer Science (WG05), number 3787 in Lecture Notes in
Computer Science, pp.445-455.

6. P. Hell, R. Shamir, and R. Sharan. A fully dynamic algorithm for recognizing and
representing proper interval graphs. in Proceedings of t he 7th Annual European
Symposium on Algorithms, Lecture Notes in Computer Science 1643, Springer-
Verlag, 1999, pp. 527-539.

7. A. Berry, P. Heggernes and Y. Villanger. A vertex incremental approach for dy-
namically maintaining chordal graphs. Discrete Mathematics, 3063 (2006), pages
318-336.

8. F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
J.Combinatorial Theory B, 1974, 16: pp.47-56.

9. J. R. Walter. Representations of chordal graphs of a tree. J.Graph Theory, 1978,
2: pp.265-267.

10. C. Ho and R. C. T. Lee. Counting clique trees and computing perfect elimination
schemes in parallel. Information Processing Letters, 1989, 31: pp.61-68.

11. M. Lundquist. Zero patterns, chordal graphs, and matrix completions. PhD thesis,
Dept.of Mathematical Sciences, Clemson University, 1990.

	Introduction
	Preliminaries
	Algorithm
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

