Калдыбаев Б.К., Женбаев Б.М., Бигалиев А.Б.

ЫГУ им. К.Тыныстанова

ФОНОВЫЙ МОНИТОРИНГ ЗА ИСКУССТВЕННЫМИ И ЕСТЕСТВЕННЫМИ РАДИОНУКЛИДАМИ В ПОЧВЕННО-РАСТИТЕЛЬНОМ КОМПЛЕКСЕ АГРОЭКОСИСТЕМ ПРИИСЫККУЛЬЯ

В настоящей работе приведены исследования по уровням накопления искусственных и естественных радионуклидов в почвах и некоторых сельскохозяйственных растений агроэкосистем Приисыккулья.

В связи с глобальной миграцией загрязняющих веществ, в том числе радиоактивных, особое внимание для определения фоновых значений уделяется долгоживущим радионуклидам: **стронцию-90** и **цезию-137** в пищевых цепях, так как при их накоплении они могут стать источниками радиоактивного облучения биоты [1,2,3].

Поведение данных радионуклидов в почвах в значительной степени определяется типом почв, механическим составом и рядом других свойств. Так, например, тяжелые по механическому составу почвы сильнее закрепляют поглощенные радионуклиды, чем легкие почвы с низким содержанием мелкодисперсных частиц. В пределах одного и того же типа почв, но в зависимости от их свойств, например, емкости поглощения, содержания обменных форм кальция и калия, органического вещества, кислотности растениях почвенного раствора, В накапливаются неодинаковые количества радиоактивного стронция и цезия. На кислых почвах они поступают в растения больших количествах, чем на нейтральных и щелочных. Основное количество стронция -90 и цезия-137 накапливается в верхнем слое почв, которые могут быть представлены в виде труднодоступных, обменных и легкорастворимых подвижных форм [3].

Результаты радиохимических анализов показали, что удельная активность стронция-90 в почвах агроценозов Ысыккульской области колеблется в пределах от 3,3 до 7,0 Бк/кг, а цезия-137 от 7,4 до 11,1 Бк/кг (таблица 1).

Удельная активность стронция-90 и цезия-137 в почвах агроценозов Ысыккульской области

Таблица 1.

No	Тип почвы	Стронций-90	Цезий-137
		(Бк/кг почвы)	(Бк/кг почвы)
1.	Серобурые	3,3±0,2	10,7±3,3
2.	Светлобурые	4,4±1,3	5,6±1,3
3.	Светло-каштановые	5,6±1,8	6,3±2,3
4.	Каштановые	11,1±2,3	8,1±3,6
5.	Темно-каштановые	7,1±1,6	14,3±4,2
6.	Горные чернозёмы	7,4±2,4	11,1±3,8
7.	Лугово болотные	2,9±0,6	3,7±1,3

При закладке почвенных разрезов на глубину до 1 метра наблюдается вертикальная миграция данных радионуклидов, было обнаружено, что они аккумулируются в верхнем почвенном горизонте (0-5 см) и их удельная активность резко уменьшается с глубиной. Кроме этого, для высокогорных пастбищ характерна их горизонтальная миграция поверхностным стоком по профилю почвы, было обнаружено, что удельная активность радионуклидов на склонах почв ниже, чем у подножья (таблица 2). К настоящему времени накоплено не мало количественных данных объясняющие данные процессы [4,5,6].

Горизонт	Удельная активность радионуклидов (Бк/кг почвы)					
(см)	Склон		Подножье		Равнина	
	Цезий-	Стронций-	Цезий-137 Стронций		Цезий-	Стронций-
	137	90		-90	137	90
0-5	90,1±1,8	46,7±1,5	166,1±10,8	89,3±1,9	12,5±1,5	3,0±1,3
5-10	$7,2\pm0,7$	2,9±0,3	3,5±0,4	$7,4\pm0,7$	2,6±0,3	6,6±1,3
10-15	$3,9\pm0,4$	2,7±0,3	3,0±0,3	3,4±0,3	2,6±0,3	1,5±0,2
15-20	4,2±0,4	2,8±0,3	3,0±0,3	5,5±0,5	5,7±1,6	1,6±0,2
20-50	2,8±0,3	0,9±0,1	1,9±0,2	2,1±0,2	2,1±1,2	6,6±1,6
50-100	$1,8\pm0,2$	1,6±0,2	6,3±0,6	1,6±0,2	1,6±0,2	2,1±0,2

На основании норм комитета по радиационной защите (КПРЗ), радиоактивное загрязнение почвы не должно превышать по цезию-137 - 370 Бк/кг, по стронцию-90 – 37 Бк/кг, т.е. мы можем предположить, что удельная активность данных радионуклидов в почвах агроценозов Ысыккульской области находится в пределах фоновых значений.

При радиохимическом анализе сельскохозяйственных культур было выявлено, что удельная активность исследуемых радионуклидов варьирует в пределах фоновых значений. Результаты анализов показали, что удельная активность стронция-90 повышена в бобовых растениях (эспарцет, люцерна) по сравнению с другими культурами, вероятно, это связано с видовыми особенностями растений данного семейства, так как по сравнению со злаками, они способны накапливать стронций и кальций в шесть раз больше [4].

Удельная активность цезия-137 выше, чем стронция-90 в клубнях картофеля, корнеплодах свеклы, початках кукурузы, что обуславливает его большую проникающую способность во все съедобные ткани растений. Среди исследованных сельскохозяйственных культур наименьшая удельная активность зарегистрирована в зерновых колосовых культурах, она максимальна в корнях и минимальна в наиболее отдаленных от корней тканях надземной части растений (например, семена) (таблица 3).

Средняя удельная активность цезия-137 и стронция-90 в некоторых сельскохозяйственных культурах

Таблица 3.

No	Название культуры	Цезий-137 Бк/кг	Стронции-90 Бк/кг
1.	Пшеница (семена)	1,1±0,1	$1,8\pm0,2$
2.	Картофель (клубни)	1,8±0,2	1,2±0,1
3.	Эспарцет	3,2±0,3	6,2±0,6
4.	Люцерна	3,3±0,3	8,5±0,8
5.	Кукуруза (початки)	5,3±0,5	1,3±0,1
6.	Свекла столовая	3,5±0,4	2,9±0,3
	(корнеплоды)		

Мощность естественного радиационного фона по гамма излучению в регионе составляет от 0,13 до 0,23 мкЗв/ч местами до 0,4 мкЗв/ч. Вариации естественного фона связаны с неоднородным распределением элементов радиоактивных рядов урана и тория в земной коре.

Уран-238. Исследованиями В.В. Ковальского с соавторами было установлено, что физико-географическое расположение и геологическое строение Ысыккульской котловины во многом определяют её как провинцию с повышенным содержанием естественного урана. Выходы гранитов, наличие углисто-кремнистых сланцев, обогащенных ураном – определяют повышенное содержание урана в почвах котловины и в воде озера Ысыккуль [7]. Результаты наших анализов показывают, что содержание урана в почвах агроэкосистем Приисыккулья варьирует в пределах от 2,8 до 12,7×10⁻⁴%.

По данным А.П. Виноградова почвы бывшего Советского Союза содержат в среднем 1,9-9,3 \times 10⁻⁵%. Так, например, чернозёмы Курского заповедника, которые принято считать эталонными почвами, содержат в среднем 7,4 \times 10⁻⁵% [8]. Если сравнить с данным эталоном, то содержание урана в почвах агроэкосистем Приисыккулья в 3,8-17,2 раз больше чем в чернозёмных почвах.

Торий-232. В работах Напѕеп R.О. и др. исследовано, что средняя концентрация тория во внешних слоях земной коры в три раза превышает концентрацию урана [9]. По Виноградову в почвах Русской равнины содержание тория близко к геохимическому фону и составляет 6,0-8,0×10⁻⁴% [8]. По данным Алексахина Р.М. его удельная активность в земной коре (кларк) составляет 33,3 Бк/кг а в почве (кларк) 25,0 Бк/кг. В почвах бывшего Советского Союза удельная активность тория-232 колеблется в пределах 0,24-40,0 Бк/кг, при среднем значении 31,1 Бк/кг [8]. Результаты наших анализов показали, что в почвах агроэкосистем Приисыккулья содержание тория-232 варьирует в пределах 11,7-84,1×10⁻⁴%, максимальные концентрации его обнаруживаются в пахотном горизонте светло -, и темно-каштановых почв, а также в почвах горных чернозёмов. Степень обогащения почв агроэкосистем Приисыккулья торием-232 составляет примерно 2,0-10,5 раз по сравнению с условным геохимическим фоном.

Радий-226. В природе радий-226 находится в рассеянном состоянии. Он не входит в состав отдельных минералов, а широко распространен в виде включений во многих образованиях. Кларковое содержание радия-226 в земной коре составляет 1×10^{-11} %, а в почвах - 8×10^{-11} %. В почвах радий-226 обладает наибольшей миграционной способностью по сравнению с другими тяжёлыми естественными радионуклидами [8]. По нашим данным, содержание радия-226 в почвах агроэкосистем Приисыккулья варьирует в пределах $9,4-43,0\times10^{-11}$ %, что выше кларка примерно в 1,2-5,4 раз. Максимальные концентрации радия-226 обнаруживались в светлокаштановых почвах.

Калий-40. Значительные вариации уровней радиоактивного фона могут быть вызваны также различными концентрациями в горных породах, почвах калия-40. Учитывая это, введено специальное понятие «калийный фон», отражающее вклад калия-40 в суммарное содержание радионуклидов. В каждом грамме природного калия содержится около 278 Бк калия-40. В пахотном горизонте почв (3×10^8 кг/км²) содержится калия-40 в количестве (2,7-21,6) $\times10^{-10}$ Бк/км² (07-5,8 Ku/км²) [8]. Результаты наших анализов показали, что содержание калия-40 в почвах агроэкосистем Приисыккулья равномерное и составляет $0,68-2,47\times10^{-11}$ %, максимальные концентрации изотопа обнаруживаются в светло-каштановых почвах (таблица 4).

Содержание урана-238, радия-226, тория-232, калия-40 в почвах Прииссыккулья Таблица

Ŋoౖ Тип почвы Торий-232 **Уран-238** Калий-40 **Радий-226** $n \times 10^{-11}\%$ $n \times 10^{-11}\%$ $n \times 10^{-4}\%$ $n \times 10^{-4}\%$ $9,4\pm3,3$ $15,8\pm4,2$ $2,8\pm0,6$ $2,6\pm0,8$ Серобурые 2. $11,7\pm3,4$ $27,9\pm5,6$ Светлобурые $8,2\pm2,2$ 0.68 ± 0.1 3. $12,7\pm3,4$ 43.0 ± 6.8 Светлокаштановые $84,1\pm16,4$ 1.30 ± 0.4 4. Каштановые $17,2\pm4,3$ $3,3\pm1,2$ $2,47\pm0,9$ $11,2\pm3,4$ 5. Темнокаштановые $17,3\pm4,3$ $3,6\pm1,4$ $2,30\pm0,8$ $12,2\pm4,2$ 9.2 ± 3.3 $31,4\pm6,2$ 6. Горные чернозёмы $48,1\pm12,4$ 1.30 ± 0.9 7. Лугово болотные $13,7\pm2,8$ 10.8 ± 4.2 0.6 ± 0.2 $38,7\pm7,2$

Содержание естественных радионуклидов в сельскохозяйственных растениях. Процесс поступления естественных радионуклидов в растения очень сложный и зависит от целого ряда взаимосвязанных факторов. Установлено, что наиболее миграционноспособными естественными радионуклидами в звене почва-растение являются радий-226 и уран-238, а наименее торий-232 [3,8]. В результате проведенных

нами исследований выявлено, что в вегетативных органах и корнях радионуклиды накапливаются значительно больше, чем в репродуктивных частях растений (семена, корнеплоды). По степени аккумуляции естественные радионуклиды располагаются примерно в следующий убывающий ряд: сахарная свекла > картофель > люцерна > клевер > овес > многолетние травы > пшеница > однолетние травы > ячмень > кукуруза. Результаты анализов представлены в таблице 5.

Содержание урана-238, радия-226, тория-232, калия-40 в сельскохозяйственных культурах Приисыккулья

Таблица 5.

№	Культура	Часть растений	Торий- 232	Уран-238 n×10 ⁻⁵ %	Калий-40 n×10 ⁻¹² %	Радий-226 n×10 ⁻¹² %
			n×10 ⁻⁵ %			
1.	Пшеница	зерно	$8,3\pm2,2$	$2,3\pm0,9$	$2,4\pm0,6$	$18,3\pm4,4$
		солома	26,1±6,6	$9,4\pm3,3$	$6,6\pm2,3$	46,4±9,6
2.	Ячмень	зерно	$6,5\pm2,3$	1,9±0,9	$3,3\pm1,4$	24,2±8,8
		солома	17,3±4,3	8,3±1,6	$8,3\pm2,2$	52,3±12,6
3.	Овес	зерно	9,4±3,1	$2,2\pm0,5$	2,8±0,8	16,3±5,5
		солома	33,2±9,2	7,8±3,2	9,4±3,4	48,8±7,8
4.	Картофель	клубни	6,2±2,3	3,4±1,2	6,3±2,2	14,2±6,6
		ботва	40,4±8,6	13,4±4,8	24,2±6,6	56,3±14,0
5.	Сахарная	корнеплоды	9,3±3,1	2,6±0,8	4,8±1,8	19,6±3,3
	свекла	ботва	54,3±6,2	15,8±3,6	19,6±5,6	62,3±18,8
6.	Однолетние	сено	18,4±4,2	6,8±2,2	3,3±0,8	16,4±4,2
	травы					
7.	Многолетние	сено	24,8±6,2	9,6±3,3	$2,3\pm0,7$	22,3±8,3
	травы					
8.	Клевер	сено	34,2±8,2	11,8±4,2	2,5±0,6	26,2±8,8
9.	Люцерна	сено	39,4±9,3	12,4±3,3	3,8±1,2	33,4±9,6
10.	Кукуруза	зелённая	16,3±4,2	8,3±3,5	2,6±1,1	18,3±5,2
		масса				

Дальнейшее изучение поведения данных радионуклидов в системе почва-растение, в частности, локализация и накопление их в различных частях растений дает возможность пополнить базы данных по фоновому мониторингу за искусственными и естественными радионуклидами в условиях агроэкосистем Приисыккулья.

Литература

- 1. Алексахин Р.М. Сельскохозяйственная радиоэкология. М.: Экология, 1991. 224 с.
- 2. Рассел Р. Радиоактивность и пища человека. М.: Атомиздат, 1971. 376 с.
- 3. Абдуллаев М.А., Алиев Дж.А. Миграция искусственных и естественных радионуклидов в системе почва-растение. Баку: Элм, 1998. 240 с.
 - 4. Тюрюканова Э.Б. Экология стронция-90 в почвах. М.: Атомиздат, 1976.-1982 с.
 - 5. Моисеев А.А., Рамзаев П.В. Цезий-137 в биосфере. М.: Агропромиздат, 1975.
- 6. Михайловская Л.Н., Молчанова И.В., Караваева Е.Н. и др. Поведение стронция-90 и цезия-137 в почвенно-растительном покрове, некоторых районов республики Саха // Экология. -1995. № 6. С. 444-447.
- 7. Ковальский В.В., Воротницкая И.Е., Лекарев В.С. и др. Урановые биогеохимические пищевые цепи в условиях Иссык-Кульской котловины // Труды биогеохимической лаборатории АН СССР. М.: Наука, 1968. –Т. XII. С. 5-112.
- 8. Тяжёлые естественные радионуклиды в биосфере // Алексахин Р.М., Архипов Н.П., Бархударов В.П. и др. /Под ред. Алексахина Р.М. М.: Наука, 1990. 350 с.
- 9. Hansen R.O., et al. In: Radioisotopes in the Biosphere. Ed. by R.S. Caldecott and L.A. Snyder. Minneapolis. Univ. of Minnesota, 1990.