УДК 548.0:534.34

К. Шаршеев, Ч.Т. Ордобаева

ЭЛЕКТРОННО- ПАРАМАГНИТНЫЙ РЕЗОНАНС ИОНОВ Cu²⁺ В МОНОГИДРАТЕ СУЛЬФАТА ЛИТИЯ

Изучены спектры электронно- парамагнитного резонанса (ЭПР) ионов Cu^{2+} в Li₂SO₄ H₂O. Установлено, что ионы Cu^{2+} замещают катионы Li⁺, образуя парамагнитные центры в двух магнитно неэквивалентных положениях, каждое из которых имеет двухкратное ориентационное вырождение. Определено, что при рентгеновском облучении кристаллов Li₂SO₄ H₂O — Cu^{2+} количество примесных ионов уменьшается. Это уменьшение объясняется изменением валентного состояния ионов Cu^{2+} .

Парамагнитные центры в кристаллах моногидрата сульфата лития исследовались в работах [1-6]. Изучение методом ЭПР низкосимметричных кристаллов легированных парамагнитными ионами, представляет особый интерес, так как позволяет выяснить симметрию ближайшего окружения, механизм зарядовой компенсации и в некоторых случаях уточнить структуры матрицы. Ранее нами сообщались результаты исследования спектров ЭПР и оптического поглощения кристаллов Li₂SO₄ H₂O с примесью Cr³⁺. Показано, что наблюдаемые в спектрах кристаллов полосы оптического и ЭПР поглощения обусловлены ионами Cr³⁺. Было установлено, что ионы хрома замещают Li⁺, а компенсация избыточного заряда осуществляется вакансиями в положении соседних ионов лития. При этом образуются центры с триклинной симметрией электрического поля.

Известный интерес представляют исследования ЭПР ионов Cu²⁺ в этих кристаллах. В этом случае можно получить информацию о самом парамагнитном ионе и об его окружении. Ниже мы приводим результаты, полученные при изучении методом ЭПР кристаллов Li₂SO₄ H₂O с примесью ионов Cu²⁺ до и после рентгеновского облучения.

Кристаллы Li₂SO₄ H₂O относятся к моноклинной сингонии. Параметры элементарной ячейки моногидрата сульфата лития впервые определены рентгенографически Циглером [7]. В моноклинной элементарной ячейке с размерами a=5,45 Å, b=4,83 Å, c=8,14 Å и $\beta=107^{\circ}35'$ расположены две молекулы. Позднее данные Циглера оспаривались в работе [8], но нейтронографические исследования подтвердили данные Циглера [9]. Внешняя форма кристалла Li₂SO₄ H₂O приведена на рис. 1.

Рис.1 Внешний вид кристалла Li₂SO₄ · H₂O.

Монокристаллы Li₂SO₄ H₂O выращены из насыщенного водного раствора при температуре 55 °C. Соотношение количества соли и растворителя выбрано по данным

диаграммы состояния [10]. Примесные кристаллы Li_2SO_4 H₂O были выращены из водных растворов с примесью CuSO₄ 5H₂O (120 мл). Если кристаллы Li_2SO_4 H₂O, выращенные без добавления примеси, были бесцветны, то кристаллы с примесью меди имели тёмно - голубую окраску.

Образцы облучали на рентгеновском аппарате УРС-70 в вольфрамовом излучении при напряжении 55 кВ и силе тока 10 мА.

Спектр ЭПР был снят при комнатной температуре на стандартном спектрометре трёхсантиметрового диапазона РЭ-1307. При изучении угловых зависимостей в качестве трёх ортогональных осей были выбраны кристаллофизические оси "a*", "b", "c"; положения линий записывали через каждые 5⁰.

Спектр ЭПР в плоскости "a*b" и "bc" состоит из одной широкой линии, расположенной со стороны слабых магнитных полей относительно линии эталона (ДФПГ g=2,0036). В плоскости "ca" эта линия расщепляется на четыре составляющие (рис. 2).

Рис. 2. Спектр ЭПР ионов Li₂SO₄ ⁺ H₂O в кристалле, зарегистрированный при комнатной температуре, при ориентации H^C=60°. плоскость "ас".

Из угловых зависимостей спектра установлено, что он обусловлен двумя магнитными неэквивалентными центрами ромбической или более низкой симметрии. Следует отметить, что каждый из этих центров имеет двукратное ориентационное вырождение.

Рис. 3. Угловые зависимости положения линий в спектре ЭПР ионов Cu²⁺ в кристаллах Li₂SO₄ H₂O, зарегистрированные при комнатной температуре в трёх ортогональных плоскостях;

а - плоскость (a*b); **б**- плоскость (bc); **в** - плоскость (a*c).

Для описания спектров был использован спин-гамильтониан ромбической симметрии со спином S=1/2 без учёта сверхтонкого взаимодействия

$$H=\beta(g_xH_xS_x+g_yH_yS_y+g_zH_zS_z) \quad (1)$$

Параметры спинового гамильтониана, полученные из изучения угловой зависимости, приведены в табл. 1.

Таблица 1.

Параметры спинового гамильтониана для парамагнитных центров Cu²⁺ в Li₂SO₄· H₂O

Типы центров	д-факторы	Направляющие косинусы относительно осей		
		a*	b	c
A _{1,2}	g _x =2,0246	0,9530	± 0,2049	± 0,2231
	g _y =2,0971	0,2732	∓ 0,8985	∓0,3433
	g _z =2,3555	0,1302	± 0,3881	∓0,9123
B _{1,2}	g _x =1,9921	0,9105	± 0,2314	± 0,3398
	g _y =2,1070	0,3827	∓ 0,8902	∓0,2450
	g _z =2,3743	0,2897	± 0,3496	∓0,8908

Мы считаем, что данный спектр обусловлен ионами меди. Медь в наиболее обычном двухзарядном состоянии (Cu^{2+}) имеет электронную конфигурацию 3d⁹. Для этого иона со спином S=1/2 характерна одна линия тонкой структуры. Наличие двух изотопов ⁶³Cu и ⁶⁵Cu с естественным содержанием 68,9 и 31,1% соответственно, обладающих одинаковым

ядерным спином J=3/2, приводит к появлению в спектре двух серий линий сверхтонкой структуры. Из-за небольшого различия ядерных магнитных моментов изотопов меди эти две серии в спектрах часто не разрешаются.

Образование двух типов парамагнитных центров можно объяснить механизмом зарядовой компенсации, которая имеет место при замещении одновалентного иона матрицы двухвалентным. Мы предполагаем, что избыточные заряды ионов Cu²⁺, замещающих калий, компенсируются вакансиями в положении соседних ионов лития.

Рентгеновское облучение приводит к заметному изменению спектров ЭПР примесных кристаллов. На рисунке 4 представлены спектры кристаллов Li_2SO_4 H_2O , зарегестрированные до и после рентгеновского облучения. С увеличением длительности рентгеновского облучения интенсивность линии ЭПР ионов Cu^{2+} во всех кристаллах уменьшается.

Ослабление интенсивности спектров при облучении свидетельствует об уменьшении концентрации ионов Cu^{2+} , что, вероятно, связано с изменением зарядового состояния примесного иона.

Рис. 4. Спектр ЭПР кристаллов Li₂SO₄ · H₂O : Cu²⁺, измеренных при комнатной температуре в плоскости а*с: 1- до облучения, 2 и 3 - после 0,5 и 2 часов рентгеновского облучения соответственно.

Изменение валентности примесного иона Cu²⁺ при рентгеновском облучении может происходить по следующей схеме:

с захватом электронов -

 $Cu^+ \rightarrow Cu^{2+} + e^-$ (2);

с захватом дырок -

$$Cu^{3+} \rightarrow Cu^{2+} + h$$
 (3-).

Электронная конфигурация ионов $Cu^+ 3d^{10}$, поэтому суммарный спин для Cu^+ S=0. Следовательно, ион Cu^+ является непарамагнитным и для него спектр ЭПР не наблюдается.

Для парамагнитного иона Cu³⁺ с электронной конфигурацией 3d⁸ должна наблюдаться группа из 3-х ЭПР линий с соотношениями интенсивностей 1:3:1. Анизотропия этих линий по магнитному полю при этом составляет несколько тысяч гаусс. В нашем случае линии ЭПР, обладающие такой анизотропией в спектре облучённого кристалла Li₂SO₄ H₂O — Cu²⁺ не наблюдались.

ЛИТЕРАТУРА

- 1. Ovenhall D.W. Paramagnetik rezonance abzorption in molecular crystals: Some comments on the paper by Bigena and Cowen.// J.Phys. Chen. Sol. 1960. V.21, Ne4.P.309-310.
- 1. Aseltine C.L.,Kin Y.W.Elektron paramagnetic resonanse studies of electron irradiated Lithium Sulfate at Liquid nitrogen temperature. //J.Phys.Chem. Sol. 1967. V.28,№5.P.867-873.
- 2. Aseltine C.L.,Kim Y.W. EPR studies of then thermal decay of the OH radicals in electron irradiated Lithium Sulfate at 77 K. //J.Phys. Chen. Sol. 1968. V.29,№3.P.531-539.
- 3. Hariharan N.,Sobhanadri J.ESR studies of paramagnetic centres in irradiated Li₂SO₄ ⁺ H₂O .//J.Phys.Chen.Sol.1969.V.30,№3.P.778-81.
- Alybakov A.A., Bujko V.M., Sharsheev K. EPR and optical absorption spectra of Cr³⁺.ions in Lithium Sulphate single crystals. Krist. und Technik, 1979, B 14, № 8. -P. 1005-1010.
- 5. Алыбаков А.А., Буйко В.М.,Шаршеев К. Спектры ЭПР облученных кристаллов сульфата лития, содержащих примесь хрома //Изв. АН Кирг. ССР. –1980. -№3. -С.22-26.
- 6. Ziegler C.E. The crystal structure of Lithium Sulphate mono-hydrate //Zs. Krist. 1934. -B 89. -№ 4. –P. 456-461.
- Larson A.C., Helmgolz L. Redetermination of the crystal structure of Lithium Sulphate mono-hydrate. Li₂SO₄ H₂O.- J. Chem. Phys., 1954, vol. 22, № 12. -P. 2049-2050.
- Озёров Р.П., Фыкин Л.Е., Раннев Н.В., Жданов Г.С. Нейтронно-графическая локализация атомов водорода в структуре моногидрата сульфата лития Li₂SO₄ H₂O. // Докл. АН. СССР. –1963. -Т. 148. -№ 5. –С.1069-1072.
- 9. Коган В.Б., Огородников С.К., Кафаров В.В. Справочник по растворимости. -Т. 3.- М.: Наука, 1969. - 1170 с.