Б.Т.Тултуков

Иссыккульский институт кооперации им.академика Ж.Алышбаева

РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ПОРОДНОГО МАССИВА ВОКРУГ НЕЗАКРЕПЛЕННОЙ ГОРИЗОНТАЛЬНОЙ ВЫРАБОТКИ

На основе метода конечных элементов получены решения неупругих задач геомеханики.

Аналитические решения задачи о напряженно-деформированном состоянии среды вокруг выработок при неравномерном сжатии в упруго-пластической постановке с учетом запредельного деформирования малочисленны. Получены некоторые решения задачи в условиях пластичности Треска и Кулона. В этих решениях имеются упрощающее предположения, что область неупругих деформаций охватывают весь контур выработки, угол внутреннего трения равен нулю и др.

Особенности запредельного деформирования породных массивов вблизи подземных выработок заключается в том, что вокруг горных выработок образуются зоны разрушения, зоны пластических и упругих деформаций охватывающих часть контура или весь контур в зависимости от граничных условий и профилей контура, а также заданного закона состояния среды. Математическое описание процесса формирование областей неупругих деформаций вблизи выработок и получения решения аналитическим методом представляется достаточно сложным. В связи с этим на сегодняшний день целесообразно использовать метод конечных элементов.

Рассмотрим в условиях плоской деформации серию решений для горизонтальной протяженной горной выработки кругового поперечного сечения радиусом R, находящей в поле вертикальных и горизонтальных напряжений σ_y и σ_x соответственно. Пренебрегая собственным весом пород в пределах рассматриваемой области, задачу можно считать симметричной как относительно горизонтальной, так и вертикальной осей и решение проводить только для 1/4 области.

Рассмотрим нагружение выработки в среде, подчиняющейся ассоциированному закону течения (λ =ctg Ψ =3) и обладающей свойством идеальной пластичности. Общие для всех решений свойства среды таковы: E=1^{10³} МПа, v=0.3, γ =0, C=1 МПа, ϕ =30⁰. Решения проведены для следующих условий нагружения:

Вариант 1: Равнокомпонентное нагружение выработки $\sigma_y = \sigma_x = 7 \text{ M}\Pi a$;

Вариант 2: Неравнокомпонентное нагружение σ_y =3.5МПа, σ_x =1.2 МПа;

Вариант 3: σ_y =7 МПа и σ_x =2.4 МПа.

Контуры пластических зон и смещения узлов контура выработки, эпюра напряжений σ_y , σ_x для всех решений, полученных по МКЭ, изображены на рис.1.

В варианте 1 для равнокомпонентного нагружения максимальное значение напряжений σ_y^{max} =11.5 МПа достигается на границе пластической зоны. Г. Л. Фисенко [2] дает решение аналогичной задачи методом предельного равновесия. Тогда максимальное напряжение, после подстановки параметров рассматриваемой задачи в формулу Г.Л.Фисенко равна 11.4 МПа, что практически равно величине, полученной нами по МКЭ.

По решениям МКЭ смещение точек контура выработки составляет U_R =-0.102R, радиус зоны пластических деформаций составляет r=1.52R (рис.1а). Б.З.Амусин [3] приводит аналитические формулы для расчета перемещений точек контура:

Рис.1. Контуры пластических зон, смещений (а) и эпюры напряжений (б) при решении задач по вариантам – 1, 2, 3; о – исходный контур выработки

$$U_R = (\gamma H + C \cdot ctg \varphi) R \sin \varphi \frac{Z^{W+2}}{2G}$$

где G-модуль сдвига; W=2sin φ/(1-sin φ) радиуса пластической зоны:

$$Z = \left[1 + W\frac{\gamma H}{S}(1 - \sin\varphi)\right]^{\frac{1}{W}}$$

где S- прочность на одноосное сжатие.

y

При подобных свойствах среды и условиях нагружения расчет по этим формулам дает значение U_R=-0.125R, r=1.57R, что весьма близко к результатам расчетов МКЭ. Относительная погрешность напряжений на границе пластической зоны составляет 0.3%, радиуса пластической зоны - 3% и смещения контура выработки 18%.

В таблице 1 приведены в долях R величины смещения узлов контура выработок для всех трех вариантов.

Таблица 1

Номер узла	Вариант 1		Вариант 2		Вариант 3	
	$\Delta X \cdot 10^3$	$\Delta Y \cdot 10^3$	$\Delta X \cdot 10^3$	$\Delta Y \cdot 10^3$	$\Delta X \cdot 10^3$	$\Delta Y \cdot 10^3$
	\overline{R}	\overline{R}	\overline{R}	R	R	\overline{R}
1	2	3	4	5	6	7
1	-100	0	-6	0	-75	0
2	-102	-15	-7	-6	-78	-21
3	-96	-29	-5	-11	-69	-40
4	-90	-43	-4	-16	-61	-58
5	-81	-55	-2	-20	-49	-71
6	-70	-63	-0.4	-23	-35	-78
7	-57	-73	0.3	-26	-23	-83
8	-43	-84	0.5	-29	-13	-85
9	-29	-88	0.4	-31	-6	-84
10	-17	-93	0.3	-32	-3	-83
11	0	-99	0	-32	0	-83

Анализ эпюра напряжений вдоль горизонтальной оси (рис.16) показывает, что область концентрации напряжений в варианте 3 отодвигается от контура выработки вглубь массива на расстояние примерно в два раза больше, чем в варианте 2. Концентрация напряжений (т.е. отношение $\sigma^{max}_{v}/\sigma^{min}_{v}$) не зависит от σ_{v} и равна 1,9.

Анализируя результаты вариантов 2 и 3 (рис.1а) отметим, что в условиях не равнокомпонентного нагружения пластические зоны не охватывают весь контур выработки. Эта зона существенно увеличивается с ростом нагрузки, концентрируясь в сравнительно узкой области, наклоняясь к вертикальной оси. Форма пластической зоны подобна четырехлистнику, такие же зоны получены в фотомеханических испытаниях. Смещение точек контура направлено внутрь выработки.

С целью сравнения результатов вышеизложенных задач рассмотрена задача о нагружении выработки в произвольно дилатирующей среде, т.е. при λ =6 и λ =9 (свойство среды и условия нагружения такие же, как и в вариантах 1, 2, 3).

Прежде всего следует отметить, что контуры пластических зон, распределение напряжений в этих решениях практически совпадают с аналогичными параметрами решений, приведенных выше при тех же прочностных и упругих свойствах среды, но с меньшим коэффициентом дилатации, а конвергенция выработки в данных решениях значительно больше. В табл.2 представлены величины напряжений σ_x и σ_y вдоль горизонтальной оси для варианта 2 при коэффициенте дилатации $\lambda = 3$ и 6.

Таблица 2

Таблииа 3

σ _x ,	λ=3	0.59	1.16	1.69	1.73	1.61	1.52	1.4	1.3	1.2	1.2
МΠа	λ=6	0.6	1.25	1.73	1.8	1.66	1.5	1.42	1.3	1.2	1.2
σ _v ,	λ=3	5.75	7.25	6.46	5.32	4.69	4.5	4.0	3.8	3.6	3.5
МПа	λ=6	5.78	7.3	6.5	5.33	4.77	4.24	4 .0	3.8	3.6	3.48

Очевидно, в средах с одинаковыми прочностными свойствами, различающихся лишь деформационными характеристиками (в частности, коэффициентом дилатации), одинаковые заданные силовые условия могут быть уравновешены лишь одинаковыми полями напряжений; это и наблюдается при сопоставлении величины напряжений вдоль горизонтальной оси.

В табл. 3 приведены в долях R смещения точек контура выработки для варианта 2 при значениях λ равном 6 и 9.

Номер узла $\lambda=6$ $\lambda=9$

	$\Delta X \cdot 10^3$	$\Delta Y \cdot 10^3$	$\Delta X \cdot 10^3$	$\Delta Y \cdot 10^3$
	R	R	R	R
1	-22	0	-31	0
2	-23	-7	-31	-17
3	-19	-13	-29	-22
4	-15	-18	-26	-28
5	-11	-22	-24	-33
6	-6	-25	-13	-37
7	-3	-27	-11	-38
8	-1	-29	-10	-38
9	-0.3	-31	-2	-43
10	0	-31	-0.9	-44
11	0	-32	0	-44

Из таблицы следует, что среднее конвергенции (U_R $10^3/R$) приблизительно равны -27 (при λ =6) и -38 (при λ =9).В случае решения 3 варианта величина конвергенции выработки соответственно равны -124 и -161. Дальнейшее решения этих задач при значениях λ >9 приводит к несходящимся итерациям. Поскольку угол α →0.

ЛИТЕРАТУРА

- 1. Абдылдаев Э.К. Напряженно деформированное состояние массива горных пород вблизи выработок. –Фрунзе: Илим, 1990.
- 2. Фисенко Г.Л. Предельное состояние горных пород вокруг выработок. -М.:Недра,1976. -С. 272.
- 3. Амусин Б.З. Геомеханические основы определения параметров, расчета и автоматизированного проектирования крепи капитальных выработок угольных шахт. Автореф.дисс. докт.техн. наук. -Л., 1989.