М.М.Кидибаев, К. Шаршеев, О.И.Клименко

ОБРАЗОВАНИЕ МИКРОДЕФЕКТОВ В ОБЛУЧЕННЫХ МОНОКРИСТАЛЛАХ LIKSO4 ЛЕГИРОВАННЫХ ИОНАМИ ХРОМА

Изучены электронные спектры облученных кристаллов LiKSO₄, легированных ионами Cr^{3^+} . Данное исследование было предпринято с целью изучения особенностей замещения примесными ионами катионов в кристаллической структуре LiKSO₄.. Установлено, что примесные ионы хрома замещают в кристаллической структуре катионы K^+ и Li⁺.

Исследование электронных спектров кристаллов, легированных ионами переходных металлов, позволяют получить более полную информацию об их спектроскопических свойствах и особенностях структуры. Нами были изучены спектры облученных кристаллов LiKSO₄, активированных ионами Cr³⁺. Данное исследование было предпринято с целью изучения особенностей замещения примесными ионами катионов в кристаллической структуре LiKSO₄.

 Cr^{3+} . кристаллов LiKSO₄, активированных Спектры поглощения ионами исследовались при комнатной температуре в спектральном интервале 200-2500 нм на кристаллах толщиной d=1,85 и 0,95 мм. В спектре поглощения были обнаружены полосы с максимумами при λ =278 нм (35971 см⁻¹), 428 нм (23364 см⁻¹) и 606 нм (16501 см⁻¹). При понижении температуры до азотной наблюдается общее смещение этих полос в коротковолновую сторону и они расположены при λ =275 нм (36363 см⁻¹), 420 нм (23809) см⁻¹) и 598 нм (16722 см⁻¹). Эти полосы поглощения характерны для ионов Cr³⁺ в октаэдрической координации связаны с разрешенными спин-квартетными переходами из основного состояния ${}^{4}A_{2g}(F)$ на ${}^{4}T_{2g}(F)$, ${}^{4}T_{1g}(F)$, ${}^{4}T_{1g}(P)$ уровни [1] (рис.1). Кроме того, обнаружены слабые полосы при λ=656 нм (15243 см⁻¹) и 684 нм (14619 см⁻¹), которые в [1] связывают со спин-запрещенными переходами ${}^{4}A_{2\sigma}(F) \rightarrow {}^{2}T_{1\sigma}(G)$ и ${}^{4}A_{2\sigma}(F) \rightarrow {}^{2}E_{\sigma}(G)$. Исследование спектра циркулярного дихроизма кристаллов LiKSO₄ активированных ионами Cr^{3+} , показало, что длиноволновая полоса (16722 см⁻¹) состоит из трех компонент с максимумами 13400, 15630 и 18150 см⁻¹. Кроме того, в спектре циркулярного дихроизма появляется новая полоса при 20250 см⁻¹.

Рис. 1. Схема энергетических уровней иона Cr^{3+} в монокристалле LiKSO₄.

Анализ угловых зависимостей линий ЭПР кристалла LiKSO₄ с примесью Cr³⁺ показал, что в решетке LiKSO₄ ионы Cr³⁺ локализованы в 12 неэквивалентных положениях, различающихся ориентацией главных осей кристаллического поля относительно кристаллографических осей.

В кристалле LiKSO₄ с пространственной группой P6₃-C₆⁶ следует ожидать образования шести магнитно-неэквивалентных комплексов Cr³⁺ [2]. Ранее увеличение числа линий ЭПР в кристаллах LiKSO₄ с примесью Cr³⁺ связывалось с двойникованием структуры кристалла LiKSO₄ [3]. Однако исследование замещения примесными ионами Cu²⁺ катионов в кристаллах LiKSO₄ свидетельствует о том, что примесные ионы могут замещать не только катионы K⁺ в октаэдрах, но также и Li⁺ в тетраэдрах, образованных ионами O²⁻ в кристаллической решетке LiKSO₄. При этом происходит образование катионных вакансий в ближайшем окружении примесных ионов. В результате возникает сильная деформация тетраэдра, вплоть до трансформации его в октаэдр. Следовательно, возможно предположить, что в спектре ЭПР первая группа линий, содержащая 6 линий, обусловлена замещением примесными ионами Cr³⁺ катионов K⁺, а вторая группа, также состоящая из 6 линий, обусловлена замещением примесными ионами Cr³⁺ катионов Li⁺ в кристалле LiKSO₄ (рис. 2).

Обычно ионы Cr^{3+} в кристаллах находятся в октаэдрической координации. Это связано с тем, что для кислорода в плотнейшей упаковке радиусы катионов колеблются от 0,3 Å до 0,5 Å в тетраэдрической координации и от 0,5 Å до 1 Å в октаэдрической. Поэтому крупные катионы входят преимущественно в октаэдры.

Существует ряд структур, в которых тетраэдры имеют размеры, близкие к октаэдрам (при значении кислородного параметра u>3/8). В таких случаях возможно вхождение крупных катионов (с ионным радиусом от 0,4 Å до 1 Å) как в октаэдры, так и в тетраэдры.

*Рис. 2. Замещение примесными ионами хрома катионов в кристаллической структуре LiKSO*₄.

Также следует отметить, что энергия экстрастабилизации для ионов Cr^{3+} в тетраэдрической координации равна 16/45 Δ , в то время как в октаэдрической координации 6/5 Δ [4], т.е. для октаэдрической координации энергия экстрастабилизации почти в три раза больше, чем для тетраэдрической, что и объясняет вхождение ионов Cr^{3+} для большинства кристаллов в октаэдры.

Исследование изоморфного замещения, примесными ионами катионов Li^+ , K^+ и Na^+ в кристаллах сложных сульфатов также показывает, что катионы Li^+ замещаются менее предпочтительно, чем катионы K^+ и Na^+ .

При облучении кристаллов LiKSO₄ с примесью трехвалентного хрома рентгеновским излучением происходит ослабление полосы поглощения при 598 нм, что

свидетельствует об уменьшении количества ионов Cr^{3+} в кристалле. Одновременно с ослаблением полосы при 598 нм в спектре облученного кристалла появляется новая полоса поглощения в области 355 нм. Рост полосы поглощения в области 355 нм при ослаблении полос поглощения, обусловленных ионами Cr^{3+} , свидетельствует о ее связи с центрами, образовавшимися в результате изменения валентности ионов Cr^{3+} .

В спектре ЭПР облученного кристалла LiKSO₄ с примесью Cr^{3+} также появляются новые линии. Сопоставление со спектром ЭПР облученного беспримесного кристалла показывает, что в высокополевой стороне спектра облученного примесного кристалла наблюдается дополнительная группа слабых линий. Поскольку эта группа линий не наблюдалась ни у облученного беспримесного кристалла, ни у необлученного примесного кристалла, можно полагать, что она обусловлена парамагнитными центрами, образовавшимися при облучении в результате изменения валентности ионов Cr^{3+} .

При ориентации B//a эта группа состоит из шести линий примерно одинаковой интенсивности, при отклонении от этой ориентации в плоскости "ab*" каждая из линий расщепляется на две, а в плоскости "ca" - на четыре линии. Все линии являются анизотропными. Вид угловых зависимостей свидетельствует о том, что в элементарной ячейке кристалла LiKSO₄ имеются два структурно-неэквивалентных типа центров, каждый из которых расположен в 12 различных позициях.

Как было отмечено выше, ионы Cr^{3+} могут замещать не только катионы K^+ в октаэдрах, но также и катионы Li^+ в тетраэдрах образованных ионами O^{2-} в кристаллической решетке LiKSO₄.

Введение трехвалентной примеси хрома, заряд которой отличается от заряда ионов матрицы, обусловливает эффекты компенсации заряда. Когда примесь Cr^{3+} встраивается замещением на место одновалентных катионов K^+ или Li^+ избыточный положительный заряд 2е должен быть компенсирован в окружающей решетке. Анализ значений направляющих косинусов кристаллов LiKSO₄ с примесью Cr^{3+} до и после облучения показывает, что они претерпевают изменение. Это свидетельствует о том, что компенсация заряда носит локальный характер, т.е. компенсирующие заряд дефекты находятся в непосредственной близости от примесного иона. Можно, однако, предположить и другую ситуацию, например, ион Cr^{3+} находится в междоузельном положении, тогда для компенсации заряда дефекта нужны три отрицательных заряда в решетке. По-видимому, такое положение энергетически менее выгодно, чем замещающее положение Cr^{3+} . При облучении кристалла ионы Cr^{3+} переходят в Cr^{5+} при этом образуются ещё две дополнительные вакансии. Это, по-видимому, приводит к трансформации окружения и оба примесных центра имеют искаженное октаэдрическое окружение.

Оценить возникшее искажение можно сравнением соотношений g-факторов. Если $g_z>g_y,g_x$ то октаэдр будет растянутым, а при $g_z<g_y,g_x$ сжатым. Вычисленные средние значения g-факторов для линий 1-6 и 7-12 облученного кристалла LiKSO₄ с примесью Cr³⁺ показаны в таблице 1.

Таблица 1

Линии	Средние значения g-тензора
	g _x =1,8365
A ₁₋₆	g _y =1,9655
	g _z =1,996
	g _x =1,8991
A ₇₋₁₂	g _y =1,9488
	g _z =2,013

Поскольку в кристалле LiKSO₄ выполняется соотношение между компонентами gтензора $g_z>g_y$, g_x то, следовательно, комплексы Cr^{5+} имеют форму растянутого октаэдра.

ЛИТЕРАТУРА

- 1. Lakshmana R., Purandar K. Optical absorption spectrum of Cr³⁺ ion doped in Zinc cezium sulphate hexahydrate.//Sol. Stat. Comun. 1981.V.40, №5. P. 567-569.
- 2. Мейлман М.Л., Самойлович М.И. Введение в спектроскопию ЭПР активированных монокристаллов.-М.:Атомиздат, 1977. 270 с.
- 3. Шаршеев К. Радиационные и примесные центры с переменной валентностью в кристаллах сложных сульфатов щелочных металлов. Екатеринбург-Каракол, 1999.
- 4. Берсукер М.Б. Строение и свойства координационных соединений. Л.: Химия, 1971. 312 с.