М.М. Кидибаев, К.Шаршеев, О.И.Клименко

ВОЛНОВЫЕ ФУНКЦИИ ИОНОВ CU²⁺ В КРИСТАЛЛАХ LiKSO₄

Проведено исследование спектроскопических характеристик кристаллов LiKSO₄, легированных ионами Cu²⁺ с целью выяснения особенностей локализации примесных ионов в кристаллической решетке. Установлено, что примесные ионы Cu²⁺ замещают катионы K^+ и Li⁺. Составлены волновые функции, характеризующие примесный ион Cu²⁺ в кристалле LiKSO₄.

Ионы Cu^{2+} с электронной конфигурацией $3d^9$ широко используются в качестве зондов для исследования симметрии кристаллических электрических полей методом ЭПР-поглощения. В частности, примесь Cu^{2+} хорошо охарактеризована в ионных кристаллах, таких как ЩГК и сульфаты щелочных металлов. Установлено, что в последнем случае Cu^{2+} входит в решетку, замещая ион щелочного металла. Для компенсации избыточного заряда иона Cu^{2+} создается вакансия на месте соседнего иона щелочного металла [1]. Катионная вакансия ведет себя по существу подобно отрицательному заряду и поэтому связана с примесным ионом кулоновским притяжением. Симметрия локального электрического поля определяется главным образом ее расположением.

Исследование спектров оптического поглощения и ЭПР кристалла LiKSO₄ было предпринято нами с целью выяснения особенностей локализации примесных ионов Cu²⁺ в кристаллической решетке.

Результаты исследования спектров ЭПР и оптического поглощения ионов Cu^{2+} в кристаллах LiKSO₄ изложены в статьях [2, 3]. Линии ЭПР условно можно разделить на две группы по четыре линии в каждой, условно обозначенных A и B, причем интенсивность четырех линий группы A вдвое больше, чем линий группы B. Вид спектра наводит на мысль о том, что в кристалле имеются два типа центров Cu^{2+} . Причём количество центров ответственных за линии A должно быть вдвое больше, чем количество центров ответственных за линии B. Центры ответственные за эти линии характеризуются следующими средними значениями g-факторов (таблица 1).

Таблица 1

Центр	Значения д-факторов при Т=300 К			Значения д-факторов при Т=77 К			
	gx	g _Y	gz	gx	g _Y	gz	
A _{1,2}	2,0349	2,2069	2,3797	2,0309	2,1867	2,3983	
B _{1,2}	2,0507	2,2121	2,3650	2,0332	2,2019	2,3964	

Однако, слияние всех наблюдаемых линий при ориентации кристалла В||с говорит о том, что и линии А и линии В обусловлены парамагнитными центрами одного и того же типа локализованными в двух магнитно-неэквивалентных положениях, каждый из которых имеет трехкратное ориентационное вырождение.

В таблице 2 показаны значения направляющих косинусов для одного ориентационно-неэквивалентного положения центров A₁ и B₁.

Изучение спектров ЭПР при температуре жидкого азота показало, что охлаждение не изменяет количества линий в спектре ЭПР, но все линии становятся значительно уже. При понижении температуры значения g-факторов, характеризующих примесный ион, проявляют следующие свойства: g_Z увеличивается, а g_y уменьшается. Наблюдавшееся изменение значений g-факторов характерно для ромбического поля вокруг иона Cu²⁺ [4, 5] и эти изменения подобны тем, что наблюдались для легированных медью систем $K_2Zn(SO_4)*6H_2O$ [4] и цинк (II) бис (пиридин-3-сульфонат) гидрат [5], в которых Cu²⁺ испытывает ромбическое искажение. Большая величина g_Z типична для связи Cu-O [6].

Таблица 2

Типы центров	Углы относительно осей при 300 К			Углы относительно осей при 77 К			
	а	b^{*}	С	а	b^{*}	С	
	78,90	24,48	68,46	78,43	25,13	68,00	
A ₁	76,34	113,99	169,26	76,04	114,63	151,21	

	17,78	94,75	72,90	18,30	94,88	72,39
	28,52	70,66	110,12	34,54	65,34	112,58
B ₁	66,67	85,30	23,52	59,61	76,54	33,77
	105,97	19,96	78,34	104,89	28,53	66,29

Результаты исследования спектров оптического поглощения нами также ранее сообщались [2]. В частности, отмечалось, что в спектре наблюдалось 8 полос поглощения, которые были идентифицированы как полосы соответствующие иону Cu²⁺ в октаэдрической координации, находящемся в решетке LiKSO₄ в двух неэквивалентных положениях. Для обоих случаев были вычислены параметры кристаллического поля, которые приведены в таблице 3 вместе с другими сходными соединениями.

	~ ~		1
1	ann	111	_ ≺
1	uonu	ии	~

Комплекс	Переход на dx ² -y ² с уровня			Параметры кристаллического поля (см ⁻¹)			Лите- ратура
	d_z^2	dxz, dyz	dxy	Dq	Ds	Dt	
$Cu(HCO_2)_2*4H_2O$	9200	13200	11200	1120	1600	560	7
$Cu_4(SO_4)(OH)_6$	8330	14285	10520	1050	1730	285	7
$Cu_8(Si_4O_{11})(OH)_4$	8330	14080	10695	1070	1674	327	7
$Cd(NH_4)_2(SO_4)_2*6H_2O$	7843	11905, 13158	9756	975	1607	282	8
$CdK_2(SO_4)_2*6H_2O$	7936	11695, 13072	9901	990	1586	326	8
LiKSO ₄ :Cu ²⁺ (A–центр)	8771	1 <mark>3513,</mark> 12121	10309	1030	1710	386	2
LiKSO ₄ :Cu ²⁺ (В–центр)	9615	$1\overline{2821}, 11587$	10721	1072	1673	584	2

Как указывалось ранее [2], в кристалле LiKSO₄ может иметься несколько возможностей вхождения ионов Cu²⁺ в кристаллическую решетку:

1. Ионы Cu²⁺ могут замещать только катионы K⁺. Однако, в этом случае следует предположить, что в элементарной ячейке LiKSO₄ катионы K⁺ должны отличаться друг от друга по месту расположения в кристалле, т.е. имеются ионы K_1^+ и K_2^+ .

2. В кристаллах LiKSO₄ ион Cu²⁺ может замещать не только катионы K⁺ расположенные в октаэдрических пустотах, но также и ионы Li⁺ локализованные в тетраэдрических пустотах, образованных анионами $SO_4^{2^-}$.

Исследование полос оптического поглощения и линий ЭПР однозначно показывает, что центры A обусловлены замещением ионами Cu^{2+} ионов K⁺ в кристаллической решетке LiKSO₄. Изучение данных о структуре доказывает, что места локализации ионов K⁺ в кристалле LiKSO₄ не отличаются друг от друга, следовательно, замещение ионами Cu²⁺ ионов K⁺ в местах K₁⁺ и K₂⁺ в кристалле исключается. Таким образом, следует предположить, что примесные центры В обусловлены замещением ионом Cu²⁺ катиона Li⁺ в тетраэдре, состоящем из ионов кислорода O²⁻.

Анализ значений, направляющих косинусов, центров А при 300 К и 77 К показывает, что эти значения почти одинаковы как при комнатной, так и при азотной температурах.

Такой же анализ проведенный для значений направляющих косинусов центров В показывает, что в этом случае наблюдается значительное отличие, выходящее за пределы ошибки эксперимента.

При понижении температуры от 300 К до 77 К в кристалле LiKSO₄ происходит фазовый переход P6₃→P31c. Исследованиями по структурному анализу, по рассеянию нейтронов оптическими и радиоспектроскопическими методами показано, что фазовые переходы в кристаллах LiKSO₄ связаны с упорядочиванием и разупорядочиванием тетраэдрических групп SO₄ и LiO₄. Упорядочивание и разупорядочивание тетраэдрических групп происходит при самопроизвольном вращении тетраэдров относительно осей и переворачиванием отдельных тетраэдров.

Изменение значений направляющих косинусов для линий В при переходе от комнатной температуры до азотной, по-видимому, обусловливается структурными изменениями, имеющими место при фазовом переходе. Это позволяет допустить, что при образовании примесных центров типа В происходит замещение ионом Cu^{2+} катиона Li⁺ в искаженном тетраэдре, состоящем из ионов кислорода O²⁻.

Однако, спектры оптического поглощения и ЭПР обоих примесных центров характерны для ионов Cu^{2+} в октаэдрическом окружении. Следовательно, при замещении одновалентных катионов Li^+ двухвалентным ионом Cu^{2+} в тетраэдрической позиции, происходит образование вакансий в ближайшем окружении последнего для сохранения зарядовой нейтральности кристаллической матрицы. По-видимому, образование вакансий приводит к сильному искажению тетраэдра, образованного ионами кислорода вокруг иона Li^+ , вплоть до трансформации его в октаэдр.

Как известно, предпочтительное замещение возможно при отличии ионных радиусов замещаемого и замещающего ионов не более, чем на 15% [9]. Как говорилось ранее, интенсивность, а следовательно и концентрация центров А в кристалле LiKSO₄, в два раза больше, чем центров В. По-видимому это связано с менее предпочтительным замещением ионов Li⁺ ионами Cu²⁺. Сопоставление ионных радиусов K⁺ (R_{K}^{+} =1,33 Å), Li⁺ (R_{Li}^{+} =0,68 Å) и Cu²⁺ (R_{Cu}^{-2+} =0,80 Å) показывает, что ион замещает ионы K⁺ предпочтительнее, чем ионы Li⁺.

Также следует отметить, что для ионов Cu^{2+} , для октаэдрической координации энергия экстрастабилизации больше, чем для тетраэдрической, что и объясняет вхождение большинства ионов Cu^{2+} в октаэдры.

Пользуясь полученными значениями g-величин и направляющих косинусов, были составлены модели примесных центров типов A и B (рис. 1 и 2).

По измеренным g-величинам можно получить наиболее точную информацию, об электронном основном состоянии примесных ионов Cu²⁺ в кристаллах. В работе [10] было показано, что для ромбических g-величин (с $g_z>g_y>g_x$) справедливы следующие соотношения: $R=(g_y-g_x)/g_z - g_y>1$, когда основным состоянием являются преимущественно d_2 , а для основного состояния d_x^{2-2} ожидается R<1.

Рис. 1. Расположение орбиталей $d_{X^2-Y^2}$ *Рис. 2. Расположение орбиталей* $d_{X^2-Y^2}$ *примесного центра типа A при 300 К.*

Полученное экспериментальное соотношение между компонентами g-тензора дает величину R<1, т.е. электронным основным состоянием ионов меди в кристалле LiKSO₄ является преимущественно $d_x^{2} g^{2}$, как было показано в работе [2]. Однако в большинстве случаев, основное состояние не является чисто $d_x^{2} g^{2}$ или d_z^{2} , а будет смесью их обоих в некотором соотношении. Форма волновой функции для этого случая была дана Рао с соавторами [11] в виде:

$$\Psi = \left(\boldsymbol{\alpha'}^{2} \right)^{\frac{1}{2}} \left[\boldsymbol{\alpha} \middle| x^{2} - y^{2} \right\rangle + \boldsymbol{\beta} \middle| z^{2} \right),$$

где α^{2} – параметр ковалентности, указывающий вероятность нахождения электрона на dорбитали металла (Cu²⁺), если α^{2} =1, то β =0 и связь является чисто ионной. Если электрон распределен поровну между обеими орбитами, то $\alpha = \beta$, тогда из $\alpha = \beta = \pm \sqrt{\frac{1}{2}}$ и

связь является ковалентной. Промежуточные значения α указывают на существование связи смешанного типа.

 α и β коэффициенты смешивания для орбиталей $|x^2-y^2>$ и $|z^2>$ соответственно, связанные соотношением $\alpha^2 + \beta^2 = 1$.

Для вычисления неизвестных, необходимых для составления волновой функции иона Cu²⁺, были использованы следующие выражения, приведенные Като и Абе [12]:

$$P = \frac{14(A_2 - A_3)}{17(\Delta g_X - \Delta g_Y)},$$

$$\alpha'^2 = \frac{7}{6} \left[\frac{A_3 - A_1}{P} - \Delta g_Z + \frac{11}{14} \Delta g_X - \frac{6}{14} \Delta g_Y \right],$$

$$K = \frac{A_2}{P} + \frac{2}{7} \alpha'^2 + \Delta g_Y - \frac{3}{14} \Delta g_X.$$

Знаки констант, сверхтонкого взаимодействия не могут быть определены из экспериментальных результатов. Были исследованы различные комбинации знаков в уравнениях, чтобы приписать знаки величинам A_X , A_y и A_Z . Однако $\alpha \sim 1$ и $\beta <<1$ можно получить только в том случае, когда A_X и A_y были выбраны положительными, а A_Z отрицательным.

Для нахождения коэффициентов смешивания (α и β), были использованы выражения для g_x и g_y в значениях α и β, выведенные Блини с соавторами [13]:

$$g_{x} = g_{e} + A \left(\alpha + \sqrt{3}\beta \right)^{2} \quad g_{y} = g_{e} + A \left(\alpha - \sqrt{3}\beta \right)^{2},$$
$$A = \frac{2\alpha'^{2}\lambda}{\Delta_{xz}} = \frac{2\alpha'^{2}\lambda}{\Delta_{yz}}.$$

где

Из них можно получить следующее выражение для $\delta g \ (\delta g = g_x - g_y)$:

$$\delta g = \frac{-2\sqrt{3}\alpha\beta}{\alpha^2 + \beta^2} (g_X + g_Y - 2g_t)$$

Волновая функция для иона Cu²⁺ была составлена путем сравнения величин бg_{выч} и бg_{эксп}. Используя полученные данные, были составлены волновые функции для обоих типов примесных центров ионов Cu²⁺ в кристалле LiKSO₄ при 300 К:

$$\Psi_{I}^{A} = (0,9860)^{l/2} [0,8023 | x^{2} - y^{2} \rangle + 0,5969 | z^{2} \rangle]$$

$$\Psi_{I}^{B} = (0,8197)^{l/2} [0,8544 | x^{2} - y^{2} \rangle + 0,5196 | z^{2} \rangle]$$

Значение α^2 для LiKSO₄ существенно отличается от е диницы, что указывает на существование значительной ковалентной связи в LiKSO₄ – Cu²⁺.

ЛИТЕРАТУРА

1. Абдулсабиров Р.Ю., Грезнев Ю.С., Зарипов М.М. Электронный парамагнитный резонанс ионов Cu²⁺ в K₂SO₄. //ФТТ. 1970. Т.12. вып.12. С. 657-659.

- 2. Кидибаев М.М., Клименко О.И., Ордобаева Ч.Т., Шаршеев К. Спектры оптического поглощения ионов Cu²⁺ в кристаллах LiKSO₄. //Вестник ИГУ, 2001, №5, с.230-235.
- 3. Шаршеев К. Спектры ЭПР монокристаллов LiKSO₄ –Cu²⁺ //Проблемы спектроскопии и спектрометрии, 1998, Вып.1, с. 47-58.
- 4. R.J. Dudley and B.J. Hathaway // J.Chem. Soc. (A) (1970) 2799.
- 5. Hathaway B.J., Billing D.E., Coord. Chem. Rev., 1970, v. 5, p.143.
- 6. T.M. Dunn in: Modern coordination chemistry. (Intersciece, New York, 1967)
- K.M.Reddy, A.S. Jacob, B.J. Reddy, Y.P. Reddy. Optical absorption spectra of Cu²⁺ in Brohantite. //Phys. Stat.sol. (b) 139, K145, 1987.
- N. Satyanarayana, S. Radhakrishna. Optical absorption spectrum of Cu²⁺ ion in Cd(NH₄)₂(SO₄)₂*6H₂O and CdK₂(SO₄)₂*6H₂O single crystals. //Solid state com. V.54, №10, pp 891-894, 1985.
- 9. Александров К.С., Безносиков Б.В. Кристаллография и кристаллохимия. М.: Наука, 1986. С. 171-179.
- 10. Lakshman S.V.J., Sundar Jacob A. ESR and optical absorbtion spectra of Cu²⁺ in LiKSO₄ //Phys. Lett.- 1984.- v.101A. №2.-109-113 p.
- 11. Bhaskar Rao T. And Narayana M. A quantitative estimation of the admixture in the ground state wave function of Cu²⁺ in Low- Simmetry crystals. // Phys. Status Solidi 106, 1981. p.601.
- 12. T.Kato and R. Abe. Elektron spin resonance of Cu²⁺ doped in TGS. // J. Phys. Soc. Japan 1973. V. 35, №6. P.1643-1648.
- 13. Bleaney B., Bowers K.D. and Price M.H.L. // Proc. R. Soc. (London) A228, p. 166, 1955.